【題目】點(x,y)滿足 ,則 的取值范圍為

【答案】[ , ]
【解析】解:作出不等式組對應的平面區(qū)域如圖:

則x>0,y>0, = ,
設k= ,則k>0,
= = = ,
則k的幾何意義是區(qū)域內(nèi)的點到原點的斜率,
由圖象知OB的斜率最小,OA的斜率最大,
,即A(1,2),
,即B(2,1),
則OB的斜率k= ,OA的斜率k=2,
≤k≤2,
設f(k)=k+ ,則函數(shù)在 ≤k≤1上遞減,在1≤k≤2上遞增,
則最小值為f(1)=1+1=2,
f(2)=2+ = ,f( )=2+ = =f(2),
則2≤f(k)≤ ,
則2≤k+
,
的取值范圍為[ ],
所以答案是:[ ]

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】直角坐標系中,曲線軸負半軸交于點,直線相切于, 上任意一點, 上的射影, 的中點.

(Ⅰ)求動點的軌跡的方程;

(Ⅱ)軌跡軸交于,點為曲線上的點,且 ,試探究三角形的面積是否為定值,若為定值,求出該值;若非定值,求其取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】解不等式: ≥2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= sinx+cosx.
(1)求f(x)的最大值;
(2)設g(x)=f(x)cosx,x∈[0, ],求g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知兩點A(﹣2,0),B(0,2),點C是圓x2+y2﹣2x=0上的任意一點,則△ABC的面積最小值是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知⊙O:x2+y2=1和點M(4,2).
(Ⅰ)過點M向⊙O引切線l,求直線l的方程;
(Ⅱ)求以點M為圓心,且被直線y=2x﹣1截得的弦長為4的⊙M的方程;
(Ⅲ)設P為(Ⅱ)中⊙M上任一點,過點P向⊙O引切線,切點為Q.試探究:平面內(nèi)是否存在一定點R,使得 為定值?若存在,請舉出一例,并指出相應的定值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】正三棱臺的上、下底面的邊長分別是3和6.
(1)若側(cè)面與底面所成的角為60°,求此三棱臺的體積;
(2)若側(cè)棱與底面所成的角為60°,求此三棱臺的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx)+b(A>0,ω>0)的最大值為2,最小值為0,其圖象相鄰兩對稱軸間的距離為2,則f(1)+f(2)+…+f(2008)=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)在給定直角坐標系內(nèi)直接畫出f(x)的草圖(不用列表描點),并由圖象寫出函數(shù) f(x)的單調(diào)減區(qū)間;

(2)當m為何值時f(x)+m=0有三個不同的零點.

查看答案和解析>>

同步練習冊答案