8.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{1-x},x≤1}\\{lo{g}_{4}(x-1),x>1}\end{array}\right.$,則2f(9)+f(log2$\frac{1}{6}$)=15.

分析 先分別求出f(9)=log48=$\frac{3}{2}$,f($lo{g}_{2}\frac{1}{6}$)=${2}^{1-lo{g}_{2}\frac{1}{6}}$=12,由此能求出2f(9)+f(log2$\frac{1}{6}$)的值.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{1-x},x≤1}\\{lo{g}_{4}(x-1),x>1}\end{array}\right.$,
∴f(9)=log48=$\frac{3}{2}$,
f($lo{g}_{2}\frac{1}{6}$)=${2}^{1-lo{g}_{2}\frac{1}{6}}$=2$÷\frac{1}{6}$=12,
∴2f(9)+f(log2$\frac{1}{6}$)=2×$\frac{3}{2}+12=15$.
故答案為:15.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.(1)化簡(jiǎn)$\frac{sin(2π-α)•tan(π-α)•cos(-π+α)}{{sin(5π+α)•sin(\frac{π}{2}+α)}}$
(2)求函數(shù)f(x)=2cosx-cos2x的最大值及對(duì)應(yīng)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知曲線C:y=$\sqrt{4-{x^2}}$(-2≤x≤0)與函數(shù)f(x)=loga(-x)及函數(shù)g(x)=a-x(a>1)的圖象分別交于A(x1,y1),B(x2,y2)兩點(diǎn),則x12+x22的值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(\frac{1}{10})^{x},x≤10}\\{-lg(x+2),x>10}\end{array}\right.$,若f(8-m2)<f(2m),則實(shí)數(shù)m的取值范圍是( 。
A.(-4,2)B.(-4,1)C.(-2,4)D.(-∞,-4)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,已知正四棱錐V-ABCD中,AC與BD交于點(diǎn)M,VM是棱錐的高,若AC=6cm,VC=5cm.
(1)求正四棱錐V-ABCD的體積;
(2)求直線VD與底面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.橢圓$\frac{x^2}{25}$+$\frac{y^2}{16}$=1和雙曲線$\frac{x^2}{4}$-$\frac{y^2}{5}$=1共同焦點(diǎn)為F1,F(xiàn)2,若P是兩曲線的一個(gè)交點(diǎn),則$\overrightarrow{P{F_1}}$•$\overrightarrow{P{F_2}}$的值為11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知集合A={x|x≥1},B={x|x>2a+1},若A∩(∁RB)=∅,則實(shí)數(shù)a的取值范圍是( 。
A.(1,+∞)B.(0,+∞)C.(-∞,1)D.(-∞,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知數(shù)列{an}的前n項(xiàng)和為Sn,滿足${S}_{n}={n}^{2}{a}_{n}-{n}^{2}(n-1)$,且${a}_{1}=\frac{1}{2}$.
(1)令$_{n}=\frac{n+1}{n}{S}_{n}$,證明:bn-bn-1=n(n≥2);
(2)求{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.(1)在所給的平面直角坐標(biāo)系內(nèi),畫出函數(shù)f(x)=x2-2x(x∉R)的圖象,根據(jù)圖象寫出函數(shù)f(x)的單調(diào)遞減區(qū)間并用定義證明;
(2)求函數(shù)f(x)=x2-2x,x∈[a,a+1](其中a為實(shí)數(shù))的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案