16.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(\frac{1}{10})^{x},x≤10}\\{-lg(x+2),x>10}\end{array}\right.$,若f(8-m2)<f(2m),則實數(shù)m的取值范圍是( 。
A.(-4,2)B.(-4,1)C.(-2,4)D.(-∞,-4)∪(2,+∞)

分析 先求出函數(shù)的單調(diào)性,根據(jù)函數(shù)單調(diào)性的性質(zhì)得到關(guān)于m的不等式,解出即可.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{(\frac{1}{10})^{x},x≤10}\\{-lg(x+2),x>10}\end{array}\right.$,
∴函數(shù)f(x)在R上單調(diào)遞減,
由f(8-m2)<f(2m),
得:8-m2>2m,解得:-4<m<2,
故選:A.

點評 本題考查了函數(shù)的單調(diào)性的應(yīng)用,考查指數(shù)函數(shù)、對數(shù)函數(shù)的性質(zhì),是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在數(shù)列{an}中,a1=-2,an+1=$\frac{{1+{a_n}}}{{1-{a_n}}}$,則a2011=( 。
A.-2B.-$\frac{1}{3}$C.$\frac{1}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若函數(shù)f(x)=|x-1|-|x-a|是奇函數(shù)而不是偶函數(shù),且f(x)不恒為0,則(a+1)2016的值( 。
A.0B.1C.22016D.32016

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)f(x)=-x2+4x,x∈[0,5]值域( 。
A.[-5,4]B.[-5,0]C.[0,-5]D.[0,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.一條光線從A(-$\frac{1}{2}$,0)處射到點B(0,1)后被y軸反射,則反射光線所在直線的方程為(  )
A.2x-y-1=0B.2x+y-1=0C.x-2y-1=0D.x+2y+1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.某校夏令營有3名男同學(xué)A,B,C和3名女同學(xué)X,Y,Z,其年級情況如表:
一年級二年級三年級
男同學(xué)ABC
女同學(xué)XYZ
現(xiàn)從這6名同學(xué)中隨機選出2人參加知識競賽(每人被選到的可能性相同).設(shè)M為事件“選出的2人來自不同年級且恰有1名男同學(xué)和1名女同學(xué)”,則事件M發(fā)生的概率為( 。
A.$\frac{2}{5}$B.$\frac{3}{5}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{1-x},x≤1}\\{lo{g}_{4}(x-1),x>1}\end{array}\right.$,則2f(9)+f(log2$\frac{1}{6}$)=15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在四棱錐S-ABCD中,底面ABCD為菱形,∠BAD=60°,平面SAD⊥平面ABCD,SA=SD,E,P,Q分別是棱AD,SC,AB的中點.
(1)(文理)求證:PQ∥平面SAD;
(2)(理)如果SA=AB=2,求直線SA與平面SEQ成角的余弦值.
(文)如果SA=AB=2,求點C到平面SAB的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.x,y滿足$\left\{{\begin{array}{l}{y≥|x-1|}\\{3y-x-3≤0}\end{array}}\right.$,則z=x+2y的最大值為(  )
A.0B.5C.7D.10

查看答案和解析>>

同步練習(xí)冊答案