19.如圖所示是y=Asin(ωx+φ)(A>0,ω>0)的圖象的一段,它的一個解析式為( 。 
A.y=$\frac{2}{3}$sin(2x+$\frac{π}{3}$)B.y=$\frac{2}{3}$sin($\frac{x}{2}$+$\frac{π}{4}$)C.y=$\frac{2}{3}$sin(x-$\frac{π}{3}$)D.y=$\frac{2}{3}$sin(2x+$\frac{2}{3}$π)

分析 根據(jù)圖象的最高點和最低點求出A,根據(jù)周期T=$\frac{5π}{12}-(-\frac{7π}{12})$求ω,圖象過($-\frac{π}{12},\frac{2}{3}$),代入求φ,即可求函數(shù)f(x)的解析式;

解答 解:由圖象的最高點$\frac{2}{3}$,最低點-$\frac{2}{3}$可得A=$\frac{2}{3}$,
周期T=$\frac{5π}{12}-(-\frac{7π}{12})$=π,
∴$ω=\frac{2π}{T}=2$.
圖象過($-\frac{π}{12},\frac{2}{3}$),
∴$\frac{2}{3}=\frac{2}{3}Sin(2×-\frac{π}{12}+φ)$,
可得:φ=$2kπ+\frac{2π}{3}$.
則解析式為y=$\frac{2}{3}$sin(2x+$\frac{2π}{3}+2kπ$)=$\frac{2}{3}sin(2x+\frac{2π}{3})$
故選:D.

點評 本題主要考查三角函數(shù)的圖象和性質(zhì),根據(jù)圖象求出函數(shù)的解析式是解決本題的關(guān)鍵.要求熟練掌握函數(shù)圖象之間的變化關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.給定直線l:y=2x-16,拋物線G:y2=ax(a>0)
(1)當(dāng)拋物線G的焦點在直線l上時,求a的值;
(2)若△ABC的三個頂點都在(1)所確定的拋物線G上,且點A的縱坐標(biāo)yA=8,△ABC的重心恰是拋物線G的焦點F,求直線BC的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為$\sqrt{3}$,實軸長為2,直線l:x-y+m=0與雙曲線C交于不同的兩點A,B,
(1)求雙曲線C的方程;  
(2)若線段AB的中點在圓x2+y2=5上,求m的值;
(3)若線段AB的長度為4$\sqrt{5}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.給出命題p:方程$\frac{x^2}{a}+\frac{y^2}{2-a}=1$表示焦點在y軸上的橢圓;命題q:曲線y=x2+(2a-3)x+1與x軸交于不同的兩點.
(1)如果命題p為真,求a的取值范圍;
(2)如果命題“p∪q”為真,“p∩q”為假,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖,該程序運行后輸出的結(jié)果是(  )
A.6B.8C.10D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)全集I是實數(shù)集R,M={x|x≥3}與N={x|(x-3)(x-1)≤0}都是I的子集(如圖所示),則陰影部分所表示的集合為( 。
A.{x|1<x<3}B.{x|1≤x<3}C.{x|1<x≤3}D.{x|1≤x≤3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知命題p:方程$\frac{x^2}{t+2}+\frac{y^2}{t-10}=1$表示雙曲線;命題q:-m<t<m+1(m>0). 若q是p的充分非必要條件,試求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知θ∈(${\frac{π}{2}$,π),$\frac{1}{sinθ}$+$\frac{1}{cosθ}$=2$\sqrt{2}$,則cos(2θ+$\frac{π}{3}}$)的值為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)$f(x)=sin({2x+φ})({|φ|<\frac{π}{2}})$的圖象向左平移$\frac{π}{6}$個單位后關(guān)于y軸對稱,則函數(shù)f(x)的一個單調(diào)遞增區(qū)間是(  )
A.$[{-\frac{5π}{6},\frac{π}{12}}]$B.$[{-\frac{π}{3},\frac{π}{6}}]$C.$[{-\frac{π}{6},\frac{π}{3}}]$D.$[{\frac{π}{6},\frac{2π}{3}}]$

查看答案和解析>>

同步練習(xí)冊答案