11.已知命題p:方程$\frac{x^2}{t+2}+\frac{y^2}{t-10}=1$表示雙曲線;命題q:-m<t<m+1(m>0). 若q是p的充分非必要條件,試求實(shí)數(shù)m的取值范圍.

分析 若q是p的充分非必要條件,則$\left\{\begin{array}{l}-m≥-2\\ m+1≤10\end{array}\right.$,結(jié)合m>0,可得答案.

解答 (本小題10分)
解:若p真,則(t+2)(t-10)<0,
所以-2<t<10…(5分)
因?yàn)閝是p的充分非必要條件,
所以$\left\{\begin{array}{l}-m≥-2\\ m+1≤10\end{array}\right.$,
又因?yàn)閙>0,
∴0<m≤2…(10分)

點(diǎn)評(píng) 本題以命題的真假判斷與應(yīng)用為載體,考查了雙曲線的標(biāo)準(zhǔn)方程,充要條件,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)曲線l極坐標(biāo)方程為ρcosθ-ρsinθ+1=0,曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=\sqrt{2}cosθ\\ y=\sqrt{2}sinθ\end{array}\right.(θ為參數(shù))$,A,B為曲線l與曲線C的兩個(gè)交點(diǎn),則|AB|=( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知sina=-$\frac{\sqrt{3}}{2}$,a∈[-2π,0],則a=$-\frac{π}{3}$和$-\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖所示是y=Asin(ωx+φ)(A>0,ω>0)的圖象的一段,它的一個(gè)解析式為(  ) 
A.y=$\frac{2}{3}$sin(2x+$\frac{π}{3}$)B.y=$\frac{2}{3}$sin($\frac{x}{2}$+$\frac{π}{4}$)C.y=$\frac{2}{3}$sin(x-$\frac{π}{3}$)D.y=$\frac{2}{3}$sin(2x+$\frac{2}{3}$π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.“a≠1或b≠2”是“a+b≠3”的( 。
A.必要不充分條件B.既不充分也不必要條件
C.充要條件D.充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.給出以下命題:
①若方程x2+2x+m=0有實(shí)根,則m≤2;
②若雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的一條漸近線斜率為2,則其離心率為$\sqrt{5}$;
③在銳角△ABC中,一定sinA>cosB成立;
④秦九韶算法的特點(diǎn)在于把求一個(gè)n次多項(xiàng)式的值轉(zhuǎn)化為求n個(gè)一次多項(xiàng)式的值;
⑤隨機(jī)模擬方法的奠基人是蒙特卡羅.
其中正確的命題序號(hào)為①②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)f(x)是定義在R上的奇函數(shù),其圖象關(guān)于直線x=1對(duì)稱,且當(dāng)0<x≤1時(shí),f(x)=log3x.記f(x)在[-10,10]上零點(diǎn)的個(gè)數(shù)為m,方程f(x)=-1在[-10,10]上的實(shí)數(shù)根和為n,則有( 。
A.m=20,n=10B.m=10,n=20C.m=21,n=10D.m=11,n=21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知$p:|{1-\frac{x-1}{3}}|≤2$,q:x2-2x+(1-m2)≤0,若“¬p”是“¬q”的必要而不充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.某校選定甲、乙、丙、丁、戊共5名教師去3個(gè)邊遠(yuǎn)學(xué)校支教,每學(xué)校至少1人,其中甲和乙必須在同一學(xué)校,甲和丙一定在不同學(xué)校,則不同的選派方案共有30種.

查看答案和解析>>

同步練習(xí)冊(cè)答案