3.設(shè)f(x)是定義在R上的奇函數(shù),其圖象關(guān)于直線x=1對(duì)稱,且當(dāng)0<x≤1時(shí),f(x)=log3x.記f(x)在[-10,10]上零點(diǎn)的個(gè)數(shù)為m,方程f(x)=-1在[-10,10]上的實(shí)數(shù)根和為n,則有(  )
A.m=20,n=10B.m=10,n=20C.m=21,n=10D.m=11,n=21

分析 利用函數(shù)的對(duì)稱性,函數(shù)的奇偶性求解函數(shù)的周期,畫(huà)出函數(shù)的圖象,然后求解函數(shù)的零點(diǎn)個(gè)數(shù).

解答 解:∵函數(shù)y=f(x)的圖象關(guān)于直線x=1對(duì)稱,
∴f(2-x)=f(x),又y=f(x)為奇函數(shù),
∴f(x+2)=f(-x)=-f(x),
∴f(x+4)=-f(x+2)=f(x),即f(x)的周期為4,
又定義在R上的奇函數(shù),故f(0)=0,
當(dāng)0<x≤1時(shí),f(x)=log3x.可得x=1,f(1)=0,
f(x)在[-10,10]上圖象如圖:
可得m=21,方程f(x)=-1在[-10,10]上的實(shí)數(shù)根分別關(guān)于x=-7;-3,1,5,9對(duì)稱,實(shí)數(shù)根的和為n,
n=-14-6+2+10+18=10.
故選:C.

點(diǎn)評(píng) 本題考查函數(shù)與方程的綜合應(yīng)用,函數(shù)的圖象與零點(diǎn)的個(gè)數(shù)問(wèn)題,考查數(shù)形結(jié)合思想以及轉(zhuǎn)化思想的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知數(shù)列{an}滿足:a1=$\frac{1}{2}$,an+1=$\frac{{a}_{n}^{2}}{2016}$+an(n∈N*).
(1)求證:an+1>an;
(2)求證:a2017<1;
(3)若ak>1,求正整數(shù)k的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.如圖,該程序運(yùn)行后輸出的結(jié)果是( 。
A.6B.8C.10D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知命題p:方程$\frac{x^2}{t+2}+\frac{y^2}{t-10}=1$表示雙曲線;命題q:-m<t<m+1(m>0). 若q是p的充分非必要條件,試求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.拋物線y2=2px(p>0)的焦點(diǎn)為F,準(zhǔn)線為l,A,B是拋物線上的兩個(gè)動(dòng)點(diǎn),且滿足$∠AFB=\frac{π}{3}$,設(shè)線段AB的中點(diǎn)M在l上的投影為N,則$\frac{{|{MN}|}}{{|{AB}|}}$的最大值是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知θ∈(${\frac{π}{2}$,π),$\frac{1}{sinθ}$+$\frac{1}{cosθ}$=2$\sqrt{2}$,則cos(2θ+$\frac{π}{3}}$)的值為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知命題p:方程$\frac{x^2}{m+1}+\frac{y^2}{3-m}=1$表示焦點(diǎn)在y軸上的橢圓,命題q:關(guān)于x的方程x2+2mx+2m+3=0無(wú)實(shí)根,若“p∧q”為假命題,“p∨q”為真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.非零向量$\overrightarrow a,\overrightarrow b$滿足$\overrightarrow a⊥({2\overrightarrow a+\overrightarrow b})$,且$\overrightarrow a$與$\overrightarrow b$的夾角為$\frac{2π}{3}$,則$\frac{{|{\overrightarrow a}|}}{{|{\overrightarrow b}|}}$=( 。
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{{\sqrt{3}}}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.設(shè)a、b∈R,若函數(shù)$f(x)=x+\frac{a}{x}+b$在區(qū)間(1,2)上有兩個(gè)不同的零點(diǎn),則f(1)的取值范圍為(0,1).

查看答案和解析>>

同步練習(xí)冊(cè)答案