6.若函數(shù)y=f(x)(x∈R)滿足f(x+2)=f(x),且x∈[-1,1]時,f(x)=1-x2.函數(shù)$g(x)=\left\{\begin{array}{l}lgx,x>0\\|\frac{1}{2}x+2|,x≤0\end{array}\right.$,則函數(shù)h(x)=f(x)-g(x)在區(qū)間[-5,5]內(nèi)的零點個數(shù)為( 。
A.6B.7C.8D.9

分析 已知函數(shù)偶函數(shù)f(x)滿足f(x+2)=f(x),可知f(x)周期為2,且x∈[-1,1]時,f(x)=1-x2,根據(jù)偶函數(shù)的性質(zhì)畫出f(x)的圖象,根據(jù)分段函數(shù)$g(x)=\left\{\begin{array}{l}lgx,x>0\\|\frac{1}{2}x+2|,x≤0\end{array}\right.$,畫出g(x)的圖象,利用數(shù)形結(jié)合的方法求出函數(shù)h(x)=f(x)-g(x)在區(qū)間[-5,5]內(nèi)的零點個數(shù)

解答 解:在R上的函數(shù)偶函數(shù)f(x)滿足f(x+2)=f(x),可知f(x)周期為2,
x∈[-1,1]時,f(x)=1-x2,
故函數(shù)f(x)的圖象如下圖所示:
函數(shù)$g(x)=\left\{\begin{array}{l}lgx,x>0\\|\frac{1}{2}x+2|,x≤0\end{array}\right.$的圖象如下圖所示:
函數(shù)h(x)=f(x)-g(x)在區(qū)間[-5,5]內(nèi)的零點的個數(shù),即為f(x)=g(x)時的交點,

由上圖可知f(x)與g(x)有8個交點,
∴h(x)在區(qū)間[-5,5]內(nèi)的零點的個數(shù)為8個,
故選:C

點評 此題主要考查偶函數(shù)的性質(zhì),以及零點定理的應(yīng)用,解題的過程中用到了數(shù)形結(jié)合的方法,這也是高考常考的熱點問題,此題是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)y=$\frac{{\sqrt{2cosx-\sqrt{2}}}}{2sinx-1}$定義域是{x|2k$π-\frac{π}{4}$$≤x≤2kπ+\frac{π}{4}$,且x$≠2kπ+\frac{π}{6}$,k∈Z}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某客運(yùn)公司用A,B兩種型號的車輛承擔(dān)甲、乙兩地間的長途客運(yùn)業(yè)務(wù),每車每天往返一次.A,B兩種車輛的載客量分別為36人和60人,在甲地和乙地之間往返一次的營運(yùn)成本分別為1600元/輛和2400元/輛.公司擬組建一個不超過21輛車的客運(yùn)車隊,并要求B型車不多于A型車7輛.若每天要運(yùn)送不少于900人從甲地去乙地的旅客,并于當(dāng)天返回,為使公司從甲地去乙地的營運(yùn)成本最小,那么應(yīng)配備A型車、B型車各多少輛?營運(yùn)成本最小為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=|x-2|.
(1)解不等式f(x+1)+f(x+2)<4;
(2)若?x∈R使得f(ax)+|a|f(x)≤4成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在圓x2+y2=4上任取一點P,過點P作x軸的垂線段PD,D為垂足.當(dāng)點P在圓上運(yùn)動時,線段PD的中點M的軌跡記作曲線C.
(1)求曲線C的方程;
(2)若點M在曲線C上,且MF1⊥MF2,求三角形△MF1F2的面積${S_{△M{F_1}{F_2}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x<0}\\{g(x),x>0}\end{array}\right.$,若g(x)是奇函數(shù).則g(x)=-2-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若函數(shù)f(x)=x3-ax2-x+6在(0,1)上單調(diào)遞減,則實數(shù)a取值范圍是(  )
A.a=1B.a≥1C.a≤1D.0<a<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若$\frac{cos2α}{sinα-cosα}$=-$\frac{1}{2}$,則sin(α+$\frac{π}{4}$)的值為( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{2}}{4}$D.-$\frac{\sqrt{2}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在長方體ABCD-A1B1C1D1中,AB=BC=EC=$\frac{1}{2}A{A}_{1}$.求證:
(1)AC1∥平面BDE;
(2)A1E⊥平面BDE.

查看答案和解析>>

同步練習(xí)冊答案