4.已知函數(shù)f(x)=|x+a|+|x-2|,其中a為實常數(shù).
(1)若函數(shù)f (x)的最小值為3,求a的值;
(2)若當x∈[1,2]時,不等式f(x)≤|x-4|恒成立,求a的取值范圍.

分析 (1)求出f(x)的最小值,得到|a+2|=3,解出a的值即可;
(2)問題轉(zhuǎn)化為|x+a|≤2,求出x的范圍,結(jié)合集合的包含關(guān)系得到關(guān)于a的不等式組,解出即可.

解答 解:(1)∵f(x)=|x-2|+|x+a|≥|(x-2)-(x+a)|=|a+2|,
當且僅當(x-2)(x+a)≤0時取等號,
∴f(x)min=|a+2|,
由|a+2|=3,解得:a=1或a=-5;
(2)當x∈[1,2]時,f(x)=|x+a|+2-x=
而|x-4|=-x+4,
由|x-4|≥f(x)恒成立,
得-x+4≥-x+2+|x+a|,
即|x+a|≤2,解得:-2-a≤x≤2-a,
由題意得[1,2]⊆[-2-a,2-a],
則$\left\{\begin{array}{l}{2-a≥2}\\{-2-a≤1}\end{array}\right.$,即-3≤a≤0.
∴a的取值范圍[-3,0]

點評 本題考查了解絕對值不等式問題,考查了分類討論思想,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.關(guān)于x的不等式x2-(2a+1)x+(a2+a-2)>0、x2-(a2+a)x+a3<0的解集分別為M和N
(1)試求M和N
(2)若M∩N=∅,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.各項均為正數(shù)的等比數(shù)列{an}的前n項和為Sn,若S2=2,S6=14,則S8=( 。
A.16B.20C.26D.30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)$y=\sqrt{2-x}$,則該函數(shù)的定義域為(-∞,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.${(2\frac{7}{9})^{\frac{1}{2}}}$-(-8.4)0-lg0.00032+(1.5)-2-5lg5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖1,在Rt△ABC中,∠ABC=60°,∠BAC=90°,AD是BC上的高,沿AD將△ABC折成600的二面角B-AD-C,如圖2.
(1)證明:平面ABD⊥平面BCD.
(2)設(shè)E為BC的中點,BD=2,求異面直線AE與BD所成的角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖1,由正四棱錐P-ABCD和正四棱柱ABCD-A1B1C1D1所組成的幾何體的三視圖如圖2.
(1)求證:PC⊥平面A1BD;
(2)求點P到平面A1BD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知m、n是兩條不重合的直線,α、β、γ是三個兩兩不重合的平面,給出下列四個命題:
①若m⊥α,m⊥β,則α∥β;
②若m?α,n?β,m∥n,則α∥β;
③若α⊥γ,β⊥γ,則α∥β;
④若m、n是異面直線,m?α,m∥β,n?β,n∥α,則α∥β
其中真命題是( 。
A.①和②B.①和③C.①和④D.③和④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)P={x|x<4},Q={x|-2<x<2},則P?Q.

查看答案和解析>>

同步練習(xí)冊答案