15.各項均為正數(shù)的等比數(shù)列{an}的前n項和為Sn,若S2=2,S6=14,則S8=( 。
A.16B.20C.26D.30

分析 根據(jù)等比數(shù)列的求和公式即可求出答案.

解答 解:各項均為正數(shù)的等比數(shù)列{an}的前n項和為Sn,S2=2,S6=14,
∴$\frac{{a}_{1}(1-{q}^{2})}{1-q}$=2,$\frac{{a}_{1}(1-{q}^{6})}{1-q}$=14,
∴相除可得 1+q2+q4=7,
解得q=$\sqrt{2}$,
∴a1=2($\sqrt{2}$-1)
S8═$\frac{2(\sqrt{2}-1)(1-{\sqrt{2}}^{8})}{1-\sqrt{2}}$=30,
故選:D.

點評 本題考查等比數(shù)列的前n項和公式和通項公式,求得q值,是解題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

12.如圖所示為求函數(shù)y=f(x)值的一個程序框圖.當輸出結(jié)果為4時,則輸入的x的值為2或-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知正項數(shù)列{an}中,a1=1,a2=2,2an2=an-12+an+12(n≥2),bn=$\frac{1}{{{a_n}+{a_{n+1}}}}$,記數(shù)列{bn}的前n項和為Sn,則S33的值是( 。
A.$\sqrt{99}$B.$\sqrt{33}$C.$4\sqrt{2}$D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.從數(shù)字0,1,3,5,7中取出不同的三個數(shù)作系數(shù),可以組成不同的一元二次方程ax2+bx+c=0的個數(shù)為(  )
A.24B.30C.48D.60

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知f(1-x)=1-f(x),且an=f(0)+f(${\frac{1}{n}}$)+f(${\frac{2}{n}}$)+…+f(${\frac{n-1}{n}}$)+f(1),則{${\frac{1}{{{a_n}{a_{n+1}}}}}\right.$}前100項之和為( 。
A.1B.$\frac{1}{2}$C.$\frac{99}{50}$D.$\frac{100}{51}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.(1)已知$\overrightarrow a$=(2,1),$\overrightarrow b$=(-3,4),求$\overrightarrow a$+$\overrightarrow b$,$\overrightarrow a$-$\overrightarrow b$,3$\overrightarrow a$+4$\overrightarrow b$的坐標.
(2)已知$\overrightarrow a+\overrightarrow b=({2,-8})$,$\overrightarrow a-\overrightarrow b=({-8,16})$,求$\overrightarrow a$和$\overrightarrow b$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知y=sin(ωx+ϕ)(ω>0,ϕ∈[0,2π)的部分圖象如圖所示,則φ=( 。
A.$\frac{3π}{2}$B.$\frac{3π}{4}$C.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=|x+a|+|x-2|,其中a為實常數(shù).
(1)若函數(shù)f (x)的最小值為3,求a的值;
(2)若當x∈[1,2]時,不等式f(x)≤|x-4|恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知△ABC的三邊a、b、c成等比數(shù)列,a、b、c所對的角依次為A、B、C.則sinB+cosB的取值范圍是(  )
A.$(1\;,\;\;1+\frac{{\sqrt{3}}}{2}]$B.$[\frac{1}{2}\;,\;\;1+\frac{{\sqrt{3}}}{2}]$C.$(1\;,\;\;\sqrt{2}]$D.$[\frac{1}{2}\;,\;\;\sqrt{2}]$

查看答案和解析>>

同步練習冊答案