20.在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=2\sqrt{2}cosθ}\\{y=2sinθ}\end{array}\right.$(θ為參數(shù)),曲線 C2的極坐標(biāo)方程為ρcosθ-$\sqrt{2}$ρsinθ-4=0.
(1)求曲線C1的普通方程和曲線  C2的直角坐標(biāo)方程;
(2)設(shè)P為曲線C1上一點(diǎn),Q為曲線 C2上一點(diǎn),求|PQ|的最小值.

分析 (1)利用參數(shù)方程與普通方程,極坐標(biāo)方程與直角坐標(biāo)方程互化的方法,可得曲線C1的普通方程和曲線  C2的直角坐標(biāo)方程;
(2)利用參數(shù)方法,求|PQ|的最小值.

解答 解:(1)由曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=2\sqrt{2}cosθ}\\{y=2sinθ}\end{array}\right.$(θ為參數(shù)),消去參數(shù)θ得,曲線C1的普通方程得$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1.
由ρcosθ-$\sqrt{2}$ρsinθ-4=0得,曲線C2的直角坐標(biāo)方程為x-$\sqrt{2}$y-4=0…(5分)
(2)設(shè)P(2$\sqrt{2}$cosθ,2$\sqrt{2}$sinθ),則點(diǎn)P到曲線C2的距離為d=$\frac{|2\sqrt{2}cosθ-2\sqrt{2}sinθ-4|}{\sqrt{1+2}}$
=$\frac{|4-4cos(θ+45°)|}{\sqrt{3}}$,…(8分)
當(dāng)cos(θ+45°)=1時(shí),d有最小值0,所以|PQ|的最小值為0…(10分)

點(diǎn)評(píng) 本題考查參數(shù)方程與普通方程,極坐標(biāo)方程與直角坐標(biāo)方程的互化,考查點(diǎn)到直線距離公式的運(yùn)用,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知兩數(shù)f(x)=alnx-x2,若對(duì)區(qū)間(0,1)內(nèi)任意兩個(gè)實(shí)數(shù)x1,x2,且x1≠x2,不等式$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>1恒成立.則實(shí)數(shù)a的取值范圍是[3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.在△ABC中,|AB|=4,|AC|=3,若D為線段BC的中點(diǎn),且滿足$\overrightarrow{DP}$•$\overrightarrow{BC}$=0,則$\overrightarrow{AP}•({\overrightarrow{AB}-\overrightarrow{AC}})$的值為$\frac{7}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)點(diǎn)P對(duì)應(yīng)的復(fù)數(shù)為-3-3i,以原點(diǎn)為極點(diǎn),實(shí)軸正半軸為極軸建立極坐標(biāo)系,則點(diǎn)P的極坐標(biāo)可能為(  )
A.(3,$\frac{3}{4}$π)B.(3,$\frac{5}{4}$π)C.(3$\sqrt{2}$,$\frac{3}{4}$π)D.(3$\sqrt{2}$,$\frac{5}{4}$π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知cos(α-$\frac{π}{3}$)=$\frac{4}{5}$,則sin(α+$\frac{7π}{6}$)的值是$-\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知f(x)為奇函數(shù),當(dāng)x<0時(shí),f(x)=ln(-x)+3x,則曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程是y=2x+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=x-lnx,g(x)=x2-ax.
(1)求函數(shù)f(x)在區(qū)間[t,t+1](t>0)上的最小值m(t);
(2)令h(x)=g(x)-f(x),A(x1,h(x1)),B(x2,h(x2))(x1≠x2)是函數(shù)h(x)圖象上任意兩點(diǎn),且滿足$\frac{{h({x_1})-h({x_2})}}{{{x_1}-{x_2}}}$>1,求實(shí)數(shù)a的取值范圍;
(3)若?x∈(0,1],使f(x)≥$\frac{a-g(x)}{x}$成立,求實(shí)數(shù)a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.甲、乙、丙、丁、戊5名同學(xué)參加某一項(xiàng)比賽,決出第一到第五的名次.甲、乙、丙三人去詢問(wèn)成績(jī),回答者對(duì)甲說(shuō):“很遺憾,你和乙都未得到第一名”; 對(duì)乙說(shuō):“你當(dāng)然不會(huì)是最差的”;對(duì)丙說(shuō):“你比甲乙都好”;從這個(gè)回答分析:5人名次的排列有( 。┓N不同情況.
A.54B.28C.36D.72

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.在極坐標(biāo)系中,以極點(diǎn)為圓心,1為半徑的圓的極坐標(biāo)方程是(  )
A.ρ=1B.ρ=sinθC.ρcosθ=1D.ρ=-cosθ

查看答案和解析>>

同步練習(xí)冊(cè)答案