若a2+b2=4c2(c≠0),則圓O:x2+y2=1的圓心到直線l:ax+by+c=0的距離為
 
考點:點到直線的距離公式
專題:直線與圓
分析:直接寫出圓的圓心到直線的距離,結(jié)合已知a2+b2=4c2求得答案.
解答: 解:∵圓O:x2+y2=1的圓心坐標為(0,0),
∴圓O:x2+y2=1的圓心到直線l:ax+by+c=0的距離d=
|c|
a2+b2
,
又a2+b2=4c2,
|c|=
1
2
a2+b2
,
則d=
|c|
a2+b2
=
1
2
a2+b2
a2+b2
=
1
2

故答案為:
1
2
點評:本題考查了圓的方程,考查了點到直線的距離公式,是基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

方程組
2x-y+4=0
x+2y-3=0
的解是(  )
A、{1,-2}
B、(-1,2)
C、{(-1,2)}
D、{x=1,y=-2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線y=4ax2(a>0)的準線與圓x2+y2+mx-
1
4
=0相切,且此拋物線上的點A(x0,2)到焦點的距離等于3,則m=( 。
A、±
3
B、±
2
C、1
D、0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)a,b∈(0,1),ab=ba,求證:a=b.(用反證法證明)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)集合A={x||x-2|≤2},B={x|
x
x+1
>1},則∁R(A∩B)等于( 。
A、{x|0≤x≤4}B、R
C、{x|x<-1}D、∅

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三棱柱ABC-A1B1C1中,底面ABC是邊長為2的正三角形,側(cè)棱長為
3
,側(cè)棱CC1⊥底面ABC,D是AC的中點.
(1)求證:AB1∥平面BC1D;
(2)求二面角D-BC1-C的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC中,B(-1,0),C(1,0),a,b,c為A,B,C所對的三條邊,若b,a,c成等差數(shù)列,求頂點A的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

點p(x,y)滿足5
(x-1)2+(y-2)2
=|3x-4y+5|,則點p的軌跡是( 。
A、直線B、橢圓
C、雙曲線D、拋物線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,右焦點為F(1,0).
(1)求此橢圓的標準方程;
(2)若過點F且傾斜角為
π
4
 的直線與此橢圓相交于A、B兩點,求|AB|的值.

查看答案和解析>>

同步練習冊答案