方程組
2x-y+4=0
x+2y-3=0
的解是( 。
A、{1,-2}
B、(-1,2)
C、{(-1,2)}
D、{x=1,y=-2}
考點(diǎn):兩條直線的交點(diǎn)坐標(biāo)
專題:直線與圓
分析:直接通過方程組求解即可.
解答: 解:方程組
2x-y+4=0
x+2y-3=0
的解為:
x=-1
y=2
,即{(-1,2)}.
故選:C.
點(diǎn)評:本題考查兩條直線的交點(diǎn)坐標(biāo)的求法,基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
π
2
<α<π,tanα-cotα=-
8
3

(1)求tanα的值;
(2)求sin(2α-
π
2
)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=lg(4-x2),則f(
x
2
)+f(
2
x
)的定義域是(  )
A、(-1,1)
B、(-4,4)
C、(-4,-1)∪(1,4)
D、(-2,-1)∪(1.2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在復(fù)平面內(nèi)與復(fù)數(shù)z=
5i
1+2i
所對應(yīng)的點(diǎn)關(guān)于虛軸對稱的點(diǎn)為A,則A對應(yīng)的復(fù)數(shù)為(  )
A、1+2iB、1-2i
C、-2+iD、2+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|y=lg(1-x)},集合B={y|y=x+
1
x
,x≠0},則A∩B=(  )
A、空集∅
B、{x|x<1且x≠0}
C、(-∞,-2]
D、(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合{x∈N|x-3<2},用列舉法表示是( 。
A、{0,1,2,3,4}
B、{1,2,3,4}
C、{0,1,2,3,4,5}
D、{1,2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐S-ABCD中,底面ABCD是菱形,其對角線的交點(diǎn)為O,且SA=SC,SA⊥BD.
(1)求證:SO⊥平面ABCD;
(2)設(shè)BAD=60°,AB=SD=2,P是側(cè)棱SD上的一點(diǎn),且SB∥平面APC,求三棱錐A-PCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:
x=1+t
y=
3
t
(t為參數(shù)),曲線C1
x=2cosθ
y=2sinθ
(θ為參數(shù)).
(1)設(shè)l與C1相交于A、B兩點(diǎn),求|AB|的值;
(2)若把曲線C1上各點(diǎn)的橫坐標(biāo)壓縮為原來的
1
4
,縱坐標(biāo)壓縮為原來的
3
4
,得到曲線C2,設(shè)點(diǎn)P是曲線C2上的一個動點(diǎn),求它到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a2+b2=4c2(c≠0),則圓O:x2+y2=1的圓心到直線l:ax+by+c=0的距離為
 

查看答案和解析>>

同步練習(xí)冊答案