【題目】已知 ,平面區(qū)域D由所有滿足 (1≤λ≤a,1≤μ≤b)的點P構(gòu)成,其面積為8,則4a+b的最小值為(
A.13
B.12
C.7
D.6

【答案】B
【解析】解:∵ ,
∴cos∠BAC= = = ,
∴sin∠BAC= = ,
設(shè)P(x,y),
∵平面區(qū)域D由所有滿足 (1≤λ≤a,1≤μ≤b)的點P構(gòu)成,
∴平面區(qū)域D的面積S=2(a﹣1)×2(b﹣1)×sin∠BAC=2[ab﹣(a+b)+1]=8,
∴ab﹣(a+b)=3,
,解得a+b≥6或a+b≤﹣2(舍),
∴ab=3+(a+b)≥9,∴4ab≥36,
4a+b =12.
故4a+b的最小值為12.
故選:B.
【考點精析】解答此題的關(guān)鍵在于理解平面向量的基本定理及其意義的相關(guān)知識,掌握如果、是同一平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)的任意向量,有且只有一對實數(shù),使

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (θ為參數(shù)).以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρcosθ=﹣2.
(Ⅰ)求C1和C2在直角坐標(biāo)系下的普通方程;
(Ⅱ)已知直線l:y=x和曲線C1交于M,N兩點,求弦MN中點的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐S﹣ABCD中,AB∥CD,BC⊥CD,側(cè)面SAB為等邊三角形,AB=BC=2,CD=SD=1.
(Ⅰ)證明:SD⊥平面SAB;
(Ⅱ)求AB與平面SBC所成的角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)的圖象在點(x0 , f(x0))處的切線方程l:y=g(x),若函數(shù)f(x)滿足x∈I(其中I為函數(shù)f(x)的定義域),當(dāng)x≠x0時,[f(x)﹣g(x)](x﹣x0)>0恒成立,則稱x0為函數(shù)f(x)的“穿越點”.已知函數(shù)f(x)=lnx﹣ x2 在(0,e]上存在一個“穿越點”,則a的取值范圍為(
A.[ ,+∞)??
B.(﹣1, ]??
C.[﹣ ,1)??
D.(﹣∞,﹣ ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=e1x(﹣a+cosx),a∈R.
(Ⅰ)若函數(shù)y=f(x)在[0,π]存在單調(diào)增區(qū)間,求實數(shù)a的取值范圍;
(Ⅱ)若f( )=0,證明:對于x∈[﹣1, ],總有f(﹣x﹣1)+2f′(x)cos(﹣x﹣1)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知D為圓O:x2+y2=8上的動點,過點D向x軸作垂線DN,垂足為N,T在線段DN上且滿足
(1)求動點T的軌跡方程;
(2)若M是直線l:x=﹣4上的任意一點,以O(shè)M為直徑的圓K與圓O相交于P,Q兩點,求證:直線PQ必過定點E,并求出點E的坐標(biāo);
(3)若(2)中直線PQ與動點T的軌跡交于G,H兩點,且 ,求此時弦PQ的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直三棱柱ABC﹣A1B1C1中,AA1=AB=AC=1,E,F(xiàn)分別是CC1 , BC的中點,AE⊥A1B1 , D為棱A1B1上的點.

(1)證明:AB⊥AC;
(2)證明:DF⊥AE;
(3)是否存在一點D,使得平面DEF與平面ABC所成銳二面角的余弦值為 ?若存在,說明點D的位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知不恒為零的函數(shù)f(x)在定義域[0,1]上的圖象連續(xù)不間斷,滿足條件f(0)=f(1)=0,且對任意x1 , x2∈[0,1]都有|f(x1)﹣f(x2)|≤ |x1﹣x2|,則對下列四個結(jié)論: ①若f(1﹣x)=f(x)且0≤x≤ 時,f(x)= x(x﹣ ),則當(dāng) <x≤1時,f(x)= (1﹣x)( ﹣x);
②若對x∈[0,1]都有f(1﹣x)=﹣f(x),則y=f(x)至少有3個零點;
③對x∈[0,1],|f(x)|≤ 恒成立;
④對x1 , x2∈[0,1],|f(x1)﹣f(x2)|≤ 恒成立.
其中正確的結(jié)論個數(shù)有(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若 上存在最小值,則實數(shù) 的取值范圍是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案