16.若$({x+y})({\frac{1}{x}+\frac{a}{y}})≥16$對任意x,y∈R*恒成立,則正實數(shù)a的最小值為( 。
A.2B.4C.6D.9

分析 不等式(x+y)($\frac{1}{x}$+$\frac{a}{y}$)≥16對任意正實數(shù)x、y恒成立,可知:16≤[(x+y)($\frac{1}{x}$+$\frac{a}{y}$)]min.令f(x)=(x+y)($\frac{1}{x}$+$\frac{a}{y}$),(a>0).利用基本不等式即可得出其最小值.

解答 解:∵不等式(x+y)($\frac{1}{x}$+$\frac{a}{y}$)≥16對任意正實數(shù)x、y恒成立,
∴16≤[(x+y)($\frac{1}{x}$+$\frac{a}{y}$)]min
令f(x)=(x+y)($\frac{1}{x}$+$\frac{a}{y}$)(a>0).
則f(x)=a+1+$\frac{ax}{y}$+$\frac{y}{x}$≥a+1+2 $\sqrt{\frac{ax}{y}•\frac{y}{x}}$=a+1+2$\sqrt{a}$.當且僅當y=$\sqrt{a}$x取等號.
∴a+1+2$\sqrt{a}$≥16,解得a≥9.
因此正實數(shù)a的最小值為9.
故選:D.

點評 本題考查了恒成立問題的等價轉(zhuǎn)化、基本不等式的應用,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

6.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的短軸的一個頂點與兩個焦點構(gòu)成正三角形,且該三角形的周長為6
(Ⅰ)求橢圓C的方程;
(Ⅱ)設F1,F(xiàn)2是橢圓C的左右焦點,若橢圓C的一個內(nèi)接平行四邊形ABCD的一組對邊過點F1和F2,求這個平行四邊形的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.設m、n是兩條不同的直線,α、β是兩個不同的平面,則( 。
A.若m∥α,n∥α,則m∥nB.若m∥n,n⊥α,則m⊥αC.若m∥α,m∥β,則α∥βD.若m∥α,α⊥β,則m⊥β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.函數(shù)$y={({\frac{1}{3}})^x}$的圖象與函數(shù)y=-log3x的圖象關(guān)于直線y=x對稱.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.設全集U=R,若集合$A=\left\{{x\left|{\frac{1}{x}≥1}\right.}\right\}$,則∁UA={x|x≤0或x>1}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.對任意a∈R,曲線y=ex(x2+ax+1-2a)在點P(0,1-2a)處的切線l與圓C:(x-1)2+y2=16的位置關(guān)系是( 。
A.相交B.相切C.相離D.以上均有可能

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.定義在R上的奇函數(shù)f(x)滿足f(x+1)=-$\frac{1}{f(x)}$.當x∈[0,1]時,f(x)=2x-1,則f($log_{\frac{1}{2}}{18}$)的值是-$\frac{1}{8}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.函數(shù)$f(x)={(6-x-{x^2})^{\frac{3}{2}}}$的單調(diào)遞減區(qū)間為( 。
A.$[{-\frac{1}{2},2}]$B.$[{-3,-\frac{1}{2}}]$C.$[-\frac{1}{2},+∞)$D.$(-∞,-\frac{1}{2}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知數(shù)列{an},{bn}與函數(shù)f(x),{an}是首項a1=15,公差d≠0的等差數(shù)列,{bn}滿足:bn=f(an).
(1)若a4,a7,a8成等比數(shù)列,求d的值;
(2)若d=2,f(x)=|x-21|,求{bn}的前n項和Sn;
(3)若d=-1,f(x)=ex,Tn=b1•b2•b3…bn,問n為何值時,Tn的值最大?

查看答案和解析>>

同步練習冊答案