【題目】小王、小張兩位同學(xué)玩投擲正四面體(每個(gè)面都為等邊三角形的正三棱錐)骰子(骰子質(zhì)地均勻,各面上的點(diǎn)數(shù)分別為)游戲,規(guī)則:小王現(xiàn)擲一枚骰子,向下的點(diǎn)數(shù)記為,小張后擲一枚骰子,向下的點(diǎn)數(shù)記為,

(1)在直角坐標(biāo)系中,以為坐標(biāo)的點(diǎn)共有幾個(gè)?試求點(diǎn)落在直線上的概率;

(2)規(guī)定:若,則小王贏,若,則小張贏,其他情況不分輸贏,試問這個(gè)游戲公平嗎?請(qǐng)說明理由.

【答案】(1)16,;(2)不公平

【解析】試題分析:

(1)由題意列出所有可能的事件可知共個(gè),結(jié)合古典概型計(jì)算公式可得點(diǎn)落在直線上的概率為;

(2)結(jié)合 (1)中的結(jié)論和古典概型計(jì)算公式可得小王贏的概率為小張贏的概率為,小王贏的概率小于小張贏的概率,所以這個(gè)游戲不公平.

試題解析:

(1)由于,

則以為坐標(biāo)的點(diǎn)有: ,共個(gè),

其中落在直線上,因此所求的概率為;

(2)滿足的點(diǎn)有:個(gè),所以小王贏的概率為

滿足的點(diǎn)有個(gè),所以小張贏的概率為

故小王贏的概率小于小張贏的概率,所以這個(gè)游戲不公平.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解答題
(Ⅰ)已知函數(shù)f(x)=|x+1|+|x﹣a|(a>0),若不等式f(x)≥5的解集為{x|x≤﹣2或x≥3},求a的值;
(Ⅱ) 已知實(shí)數(shù)a,b,c∈R+ , 且a+b+c=m,求證: + +

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ln(2ax+1)+ ﹣x2﹣2ax(a∈R).
(1)若x=2為f(x)的極值點(diǎn),求實(shí)數(shù)a的值;
(2)若y=f(x)在[3,+∞)上為增函數(shù),求實(shí)數(shù)a的取值范圍;
(3)當(dāng)a=﹣ 時(shí),方程f(1﹣x)= 有實(shí)根,求實(shí)數(shù)b的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列四個(gè)命題: ①x0∈R,ln(x02+1)<0;
x>2,x2>2x;
α,β∈R,sin(α﹣β)=sin α﹣sin β;
④若q是¬p成立的必要不充分條件,則¬q是p成立的充分不必要條件.
其中真命題的個(gè)數(shù)為(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知菱形 ABCD 中,對(duì)角線 AC 與 BD 相交于一點(diǎn) O,∠A=60°,將△BDC 沿著 BD 折起得△BDC',連結(jié) AC'.

(Ⅰ)求證:平面 AOC'⊥平面 ABD;
(Ⅱ)若點(diǎn) C'在平面 ABD 上的投影恰好是△ABD 的重心,求直線 CD 與底面 ADC'所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=2017x+sin2017x,g(x)=log2017x+2017x , 則( )
A.對(duì)于任意正實(shí)數(shù)x恒有f(x)≥g(x)
B.存在實(shí)數(shù)x0 , 當(dāng)x>x0時(shí),恒有f(x)>g(x)
C.對(duì)于任意正實(shí)數(shù)x恒有f(x)≤g(x)
D.存在實(shí)數(shù)x0 , 當(dāng)x>x0時(shí),恒有f(x)<g(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查中小學(xué)課外使用互聯(lián)網(wǎng)的情況,教育部向華東、華北、華南和西部地區(qū)60所中小學(xué)發(fā)出問卷份, 名學(xué)生參加了問卷調(diào)查,并根據(jù)所得數(shù)據(jù)畫出樣本的頻率分布直方圖(如圖).

(1)要從這名中小學(xué)中用分層抽樣的方法抽取名中小學(xué)生進(jìn)一步調(diào)查,則在(小時(shí))時(shí)間段內(nèi)應(yīng)抽出的人數(shù)是多少?

(2)若希望的中小學(xué)生每天使用互聯(lián)網(wǎng)時(shí)間不少于(小時(shí)),請(qǐng)估計(jì)的值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】英格蘭足球超級(jí)聯(lián)賽,簡(jiǎn)稱英超,是英國足球最高等級(jí)的職業(yè)足球聯(lián)賽,也是世界最高水平的職業(yè)足球聯(lián)賽之一,目前英超參賽球隊(duì)有20個(gè),在2014-2015賽季結(jié)束后將各隊(duì)積分分成6段,并繪制出了如圖所示的頻率分布直方圖(圖中各分組區(qū)間包括左端點(diǎn),不包括右端點(diǎn),如第一組表示積分在[30,40)內(nèi)).根據(jù)圖中現(xiàn)有信息,解答下面問題:

(Ⅰ)求積分在[40,50)內(nèi)的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;

(Ⅱ)從積分在[40,60)中的球隊(duì)中任選取2個(gè)球隊(duì),求選取的2個(gè)球隊(duì)的積分在頻率分布直方圖中處于不同組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)滿足f(x)=f( ),當(dāng)x∈[1,4]時(shí),f(x)=lnx,若在區(qū)間x∈[ ,4]內(nèi),函數(shù)g(x)=f(x)﹣ax與x軸有三個(gè)不同的交點(diǎn),則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

同步練習(xí)冊(cè)答案