【題目】關(guān)于平面向量 , ,有下列三個(gè)命題:
①若 = ,則 =
②若 =(1,k), =(﹣2,6), ,則k=﹣3.
③非零向量 滿足| |=| |=| |,則 + 的夾角為60°.
其中真命題的序號(hào)為 . (寫出所有真命題的序號(hào))

【答案】②
【解析】解:①若 = ,則 )=0,此時(shí) ⊥( ),而不一定 = ,①為假.
②由兩向量 的充要條件,知1×6﹣k(﹣2)=0,解得k=﹣3,②為真.
③如圖,在△ABC中,設(shè) ,
由| |=| |=| |,可知△ABC為等邊三角形.
由平行四邊形法則作出向量 + = ,
此時(shí) + 成的角為30°.③為假.
綜上,只有②是真命題.
答案:②

【考點(diǎn)精析】通過靈活運(yùn)用命題的真假判斷與應(yīng)用,掌握兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y= 的定義域是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的有
①刻畫一組數(shù)據(jù)集中趨勢的統(tǒng)計(jì)量有極差、方差、標(biāo)準(zhǔn)差等;刻畫一組數(shù)據(jù)離散程度統(tǒng)計(jì)量有平均數(shù)、中位數(shù)、眾數(shù)等.
②拋擲兩枚硬幣,出現(xiàn)“兩枚都是正面朝上”、“兩枚都是反面朝上”、“恰好一枚硬幣正面朝上”的概率一樣大.
③有10個(gè)鬮,其中一個(gè)代表獎(jiǎng)品,10個(gè)人按順序依次抓鬮來決定獎(jiǎng)品的歸屬,則摸獎(jiǎng)的順序?qū)χ歇?jiǎng)率沒有影響.
④向一個(gè)圓面內(nèi)隨機(jī)地投一個(gè)點(diǎn),如果該點(diǎn)落在圓內(nèi)任意一點(diǎn)都是等可能的,則該隨機(jī)試驗(yàn)的數(shù)學(xué)模型是古典概型.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列五個(gè)命題:
①x= 是函數(shù)y=2sin(2x﹣ )的一條對(duì)稱軸;
②函數(shù)y=tanx的圖象關(guān)于點(diǎn)( ,0)對(duì)稱;
③正弦函數(shù)在第一象限為增函數(shù)
④函數(shù)y=cos(x﹣ )的一個(gè)單調(diào)增區(qū)間是(﹣ ,
以上四個(gè)命題中正確的有(填寫正確命題前面的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=sin2x+sin2x+3cos2x,求
(1)函數(shù)的最小值及此時(shí)的x的集合.
(2)函數(shù)的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知具有相關(guān)關(guān)系的兩個(gè)變量之間的幾組數(shù)據(jù)如下表所示:

(1)請(qǐng)根據(jù)上表數(shù)據(jù)在網(wǎng)格紙中繪制散點(diǎn)圖;

(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程,并估計(jì)當(dāng)時(shí), 的值;

(3)將表格中的數(shù)據(jù)看作五個(gè)點(diǎn)的坐標(biāo),從這五個(gè)點(diǎn)中隨機(jī)抽取2個(gè)點(diǎn),求這兩個(gè)點(diǎn)都在直線的右下方的概率.

(參考公式: ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c.已知
(1)求 的值;
(2)若cosB= ,△ABC的周長為5,求b的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l:x﹣my+3=0和圓C:x2+y2﹣6x+5=0
(1)當(dāng)直線l與圓C相切時(shí),求實(shí)數(shù)m的值;
(2)當(dāng)直線l與圓C相交,且所得弦長為 時(shí),求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】證明下列不等式:
(1)設(shè)a,b,c∈R* , 且滿足條件a+b+c=1,證明: ≥9
(2)已知a≥0,證明:

查看答案和解析>>

同步練習(xí)冊(cè)答案