精英家教網 > 高中數學 > 題目詳情
15.已知變量x,y滿足約束條件$\left\{\begin{array}{l}{x+y≤3}&{\;}\\{x-y≤2}&{\;}\\{x≥1}&{\;}\end{array}\right.$,若x+2y≥a恒成立,則實數a的取值范圍為( 。
A.(-∞,-1]B.(-∞,2]C.(-∞,3]D.[-1,3]

分析 要使x+2y≥a恒成立,需使x+2y得最小值大于等于a,設z=x+2y,可得y=-$\frac{1}{2}$x+z,即z為平行直線的斜率,作出足約束條件$\left\{\begin{array}{l}{x+y≤3}&{\;}\\{x-y≤2}&{\;}\\{x≥1}&{\;}\end{array}\right.$,對應的可行域,平移直線可得最小值,可得答案.

解答 解:要使x+2y≥a恒成立,需使x+2y得最小值大于等于a,
設z=x+2y,可得y=-$\frac{1}{2}$x+z,即z為平行直線的斜率,
作出足約束條件$\left\{\begin{array}{l}{x+y≤3}&{\;}\\{x-y≤2}&{\;}\\{x≥1}&{\;}\end{array}\right.$對應的可行域,如圖:
平移直線可得當直線經過點A(1,-1)時,z取最小值-1,
故可得實數a的取值范圍為a≤-1,
故選:A.

點評 本題考查簡單的線性規(guī)劃,準確作圖時解決問題的關鍵,屬中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

5.已知a>0,x,y滿足約束條件$\left\{\begin{array}{l}{x≥1}\\{x+y≤3}\\{y≥a(x-2)}\end{array}\right.$,若z=2x+y的最大值為$\frac{11}{2}$,則a=( 。
A.5B.$\frac{1}{2}$C.2D.1

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

6.已知函數f(x)=-x3(x>0),若f(m)-$\frac{1}{2}$m2≤f(1-m)-$\frac{1}{2}$(1-m)2,則m的取值范圍為[$\frac{1}{2}$,1).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,左,右焦點分別是F1,F(xiàn)2,以F1為圓心以3為半徑的圓與以F2為圓心以1為半徑的圓相交,且交點在橢圓C上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)線段PQ是橢圓C過點F2的弦,且$\overrightarrow{P{F}_{2}}$=λ$\overrightarrow{{F}_{2}Q}$.
(i)求△PF1Q的周長;
(ii)求△PF1Q內切圓面積的最大值,并求取得最大值時實數λ的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

10.若F1,F(xiàn)2是橢圓C:$\frac{{y}^{2}}{9}$+$\frac{{x}^{2}}{m}$=1(0<m<9)的兩個焦點,橢圓上存在一點P,滿足以橢圓短軸為直徑的圓與線段PF1相切于該線段的中點M.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(0,$\sqrt{5}$)的直線l與橢圓C交于兩點A、B,線段AB的中垂線l1交x軸于點N,R是線段AN的中點,求直線l1與直線BR的交點E的軌跡方程.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.某學校有老師100人,男學生600人,女學生500人,現(xiàn)用分層抽樣的方法從全體師生中抽取一個容量為n的樣本,已知女學生一共抽取了40人,則n的值是( 。
A.96B.192C.95D.190

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

7.已知函數f(x)=$\frac{1}{3}$x3-x2-3x+1.
(1)求y=f(x)在x=1處的切線方程;
(2)求y=f(x)的極值點.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

4.已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.
(1)若m=-1求A∩B;
(2)若A∩B=∅,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

5.過點P(-2,3)且在兩坐標軸上的截距相等的直線l的方程為x+y-1=0或3x+2y=0.

查看答案和解析>>

同步練習冊答案