A. | 5 | B. | $\frac{1}{2}$ | C. | 2 | D. | 1 |
分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義即可得到結(jié)論.
解答 解:先作出不等式$\left\{\begin{array}{l}{x≥1}\\{x+y≤3}\\{y≥a(x-2)}\end{array}\right.$,對(duì)應(yīng)的區(qū)域,如圖:
若z=2x+y的最大值為$\frac{11}{2}$,則2x+y≤$\frac{11}{2}$,
直線y=a(x-2)過(guò)定點(diǎn)(2,0),
則直線2x+y=$\frac{11}{2}$與x+y=3相交于A,
由$\left\{\begin{array}{l}{x+y=3}\\{2x+y=\frac{11}{2}}\end{array}\right.$得$\left\{\begin{array}{l}{x=\frac{5}{2}}\\{y=\frac{1}{2}}\end{array}\right.$,即A($\frac{5}{2}$,$\frac{1}{2}$),
同時(shí)A也在直線y=a(x-2)上,
即a($\frac{5}{2}$-2)=$\frac{1}{2}$,
得a=1
故選:D.
點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,根據(jù)目標(biāo)函數(shù)的最大值,作出目標(biāo)函數(shù),求出目標(biāo)函數(shù)和條件對(duì)應(yīng)直線的交點(diǎn)坐標(biāo)是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{5π}{6}$ | B. | $\frac{3π}{4}$ | C. | $\frac{2π}{3}$ | D. | $\frac{3π}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{a}$<$\frac{a}$ | B. | $\frac{1}{a^{2}}$<$\frac{1}{{a}^{2}b}$ | C. | a2<b2 | D. | ab2<a2b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,-1] | B. | (-∞,2] | C. | (-∞,3] | D. | [-1,3] |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com