分析 根據(jù)題意,分2種情況討論:①、當(dāng)a>1時,loga(2x-1)>loga(3x+2)?$\left\{\begin{array}{l}{2x-1>0}\\{3x+2>0}\\{2x-1>3x+2}\end{array}\right.$,②、當(dāng)0<a<1時,loga(2x-1)>loga(3x+2)?$\left\{\begin{array}{l}{2x-1>0}\\{3x+2>0}\\{2x-1<3x+2}\end{array}\right.$,分別求出x的取值范圍,綜合可得答案.
解答 解:根據(jù)題意,分2種情況討論:
①、當(dāng)a>1時,loga(2x-1)>loga(3x+2)?$\left\{\begin{array}{l}{2x-1>0}\\{3x+2>0}\\{2x-1>3x+2}\end{array}\right.$,
解可得:不等式的解集為∅,
②、當(dāng)0<a<1時,loga(2x-1)>loga(3x+2)?$\left\{\begin{array}{l}{2x-1>0}\\{3x+2>0}\\{2x-1<3x+2}\end{array}\right.$,
解可得:x>$\frac{1}{2}$;
故當(dāng)a>1時,不等式的解集為∅,
當(dāng)0<a<1時,不等式的解集為{x|x>$\frac{1}{2}$}
點(diǎn)評 本題考查對數(shù)不等式的解法,注意需要分類討論a的取值范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(-x1)>f(-x2) | B. | f(-x1)<f(-x2) | ||
C. | f(-x1)=f(-x2) | D. | f(-x1)與f(-x2)的大小不定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2x-3y+5=0 | B. | 2x-3y+8=0 | C. | 3x+2y-1=0 | D. | 3x+2y+7=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2,5 | B. | 8,6 | C. | 5,9 | D. | 8,8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com