【題目】如圖1,在直角梯形ABCD中,,,四邊形ABEF是正方形.將正方形ABEF沿AB折起到四邊形的位置,使平面平面ABCD,M的中點,如圖2.

12

(1)求證:;

(2)求平面與平面所成銳二面角的余弦值.

【答案】(1)見解析;(2)

【解析】

1)利用正方形的性質(zhì),以及線面垂直的性質(zhì),證得,得到平面,即可得到;

2)以點B為坐標原點,分別以BC,所在直線為x,z軸,建立空間直角坐標系,分別求得平面與平面的法向量,利用向量的夾角公式,即可求解.

1)因為為正方形,所以,

因為平面平面,平面平面,

平面,所以平面ABCD,因為平面ABCD,所以

設(shè),則,,且,

平面,又平面,,

2)如圖,以點B為坐標原點,分別以BC,所在直線為x,z軸,建立如圖所示的空間直角坐標系,則,,,,

所以,,,

設(shè)平面的一個法向量為,

,得,令,,,所以,

平面的法向量為,

設(shè)平面與平面所成銳二面角為θ,

所以平面與平面所成銳二面角的余弦值為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知直線與拋物線交于,兩點,且的面積為16(為坐標原點).

(1)求的方程.

(2)直線經(jīng)過的焦點不與軸垂直,交于兩點,若線段的垂直平分線與軸交于點,試問在軸上是否存在點,使為定值?若存在,求該定值及的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】哈三中團委組織了古典詩詞的知識競賽,從參加考試的學生中抽出60名學生(男女各30名),將其成績分成六組,,,其部分頻率分布直方圖如圖所示.

)求成績在的頻率,補全這個頻率分布直方圖,并估計這次考試的眾數(shù)和中位數(shù);

)從成績在的學生中選兩人,求他們在同一分數(shù)段的概率;

)我們規(guī)定學生成績大于等于80分時為優(yōu)秀,經(jīng)統(tǒng)計男生優(yōu)秀人數(shù)為4人,補全下面表格,并判斷是否有99%的把握認為成績是否優(yōu)秀與性別有關(guān)?

優(yōu)秀

非優(yōu)秀

合計

4

30

30

合計

60

0.025

0.010

0.005

0.001

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某校甲、乙、丙三個興趣小組的學生人數(shù)分別為3624,12.現(xiàn)采用分層抽樣的方法從中抽取6人,進行睡眠質(zhì)量的調(diào)查.

1)應(yīng)從甲、乙、丙三個興趣小組的學生中分別抽取多少人?

2)設(shè)抽出的6人分別用、、、、表示,現(xiàn)從6人中隨機抽取2人做進一步的身體檢查.

i)試用所給字母列出所有可能的抽取結(jié)果;

ii)設(shè)為事件抽取的2人來自同一興趣小組,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,梯形中,,,的中點,將沿翻折,構(gòu)成一個四棱錐,如圖2.

(1)求證:異面直線垂直;

(2)求直線與平面所成角的大;

(3)若三棱錐的體積為,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,過拋物線一點作兩條直線分別交拋物線于,斜率存在且傾斜角互補時

值;

直線上的截距時,面積最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,圓經(jīng)過伸縮變換后得到曲線以坐標原點為極點,軸的正半軸為極軸,并在兩種坐標系中取相同的單位長度,建立極坐標系,直線的極坐標方程為

(1)求曲線的直角坐標方程及直線的直角坐標方程;

(2)設(shè)點上一動點,求點到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】明初出現(xiàn)了一大批杰出的騎兵將領(lǐng),比如徐達、常遇春、李文忠、藍玉和朱棣.明初騎兵軍團擊敗了不可一世的蒙古騎兵,是當時世界上最強騎兵軍團.假設(shè)在明軍與元軍的某次戰(zhàn)役中,明軍有8位將領(lǐng),善用騎兵的將領(lǐng)有5人;元軍有8位將領(lǐng),善用騎兵的有4人.

1)現(xiàn)從明軍將領(lǐng)中隨機選取4名將領(lǐng),求至多有3名是善用騎兵的將領(lǐng)的概率;

2)在明軍和元軍的將領(lǐng)中各隨機選取2人,為善用騎兵的將領(lǐng)的人數(shù),寫出的分布列,并求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已如橢圓E)的離心率為,點E.

1)求E的方程:

2)斜率不為0的直線l經(jīng)過點,且與E交于P,Q兩點,試問:是否存在定點C,使得?若存在,求C的坐標:若不存在,請說明理由

查看答案和解析>>

同步練習冊答案