分析 由S=$\frac{1}{{4\sqrt{3}}}$(b2+c2-a2),得$\frac{1}{2}$bcsinA=$\frac{1}{{4\sqrt{3}}}$(b2+c2-a2),利用余弦定理及同角三角函數(shù)的關(guān)系可求得tanA=1,由A的范圍可求A.
解答 解:∵S=$\frac{1}{{4\sqrt{3}}}$(b2+c2-a2),即$\frac{1}{2}$bcsinA=$\frac{1}{{4\sqrt{3}}}$(b2+c2-a2)=$\frac{1}{{4\sqrt{3}}}$×2bccosA,
∴tanA=$\frac{sinA}{cosA}$=$\frac{\sqrt{3}}{3}$,
由A為三角形的內(nèi)角,
∴A=$\frac{π}{6}$,
故答案為:$\frac{π}{6}$.
點評 該題考查三角形的面積公式、余弦定理,屬基礎題,準確記憶公式并靈活運用是解題關(guān)鍵.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | 2 | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{11}{5}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|-3≤x<-1或1<x≤2} | B. | {x|-3<x≤-1或1<x<2} | C. | {x|-3≤x≤-1或1≤x<2} | D. | {x|-3≤x≤-1或1<x≤2} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | h′(a)<0 | B. | h′(a)>0 | C. | h′(a)=0 | D. | h′(a)的符號不定 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com