【題目】某公司計劃明年用不超過6千萬元的資金投資于本地養(yǎng)魚場和遠洋捕撈隊.經(jīng)過本地養(yǎng)魚場年利潤率的調研,得到如圖所示年利潤率的頻率分布直方圖.對遠洋捕撈隊的調研結果是:年利潤率為60%的可能性為0.6,不賠不賺的可能性為0.2,虧損30%的可能性為0.2.假設該公司投資本地養(yǎng)魚場的資金為x(x≥0)千萬元,投資遠洋捕撈隊的資金為y(y≥0)千萬元.
(1)利用調研數(shù)據(jù)估計明年遠洋捕撈隊的利潤ξ的分布列和數(shù)學期望Eξ.
(2)為確保本地的鮮魚供應,市政府要求該公司對本地養(yǎng)魚場的投資不得低于遠洋捕撈隊的一半.適用調研數(shù)據(jù),給出公司分配投資金額的建議,使得明年兩個項目的利潤之和最大.

【答案】
(1)解:隨機變量ξ的可能取值為0.6y,0,﹣0.3y,

隨機變量ξ的分布列為,

ξ

0.6y

0

﹣0.3y

P

0.6

0.2

0.2

∴Eξ=0.36y﹣0.06y=0.3y


(2)解:根據(jù)題意得,x,y滿足的條件為 ①,

由頻率分布直方圖得本地養(yǎng)魚場的年平均利潤率為:

﹣0.3×0.2×0.5+(﹣0.1)×0.2×0.5+0.1×0.2×1.0+0.3×0.2×2.0+0.5×0.2×1.0=0.20,

∴本地養(yǎng)魚場的年利潤為0.20x千萬元,

∴明年連個個項目的利潤之和為z=0.2x+0.3y,

作出不等式組①所表示的平面區(qū)域若下圖所示,即可行域.

當直線z=0.2x+0.3y經(jīng)過可行域上的點M時,截距 最大,即z最大.

解方程組 ,得

∴z的最大值為:0.20×2+0.30×4=1.6千萬元.

即公司投資本地養(yǎng)魚場和遠洋捕撈隊的資金應分別為2千萬元、4千萬元時,明年兩個項目的利潤之和的最大值為1.6千萬元.


【解析】(1)隨機變量ξ的可能取值為0.6y,0,﹣0.3y,分別求出相應的概率,由此能求出隨機變量ξ的分布列和Eξ.(2)根據(jù)題意得,x,y滿足的條件,由頻率分布直方圖求出本地養(yǎng)魚場的年平均利潤率為0.20x千萬元,從而明年連個個項目的利潤之和為z=0.2x+0.3y,作出x,y滿足的可行域,由此能求出公司投資本地養(yǎng)魚場和遠洋捕撈隊的資金應分別為2千萬元、4千萬元時,明年兩個項目的利潤之和的最大值為1.6千萬元.
【考點精析】掌握頻率分布直方圖是解答本題的根本,需要知道頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在(0,+∞)上的函數(shù)f(x)的導函數(shù)為f'(x),滿足x2f'(x)+xf(x)=lnx,f(e)= ,則f(x)(
A.有極大值,無極小值
B.有極小值,無極大值
C.既有極大值又有極小值
D.既無極大值也無極小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某年高考中,某省10萬考生在滿分為150分的數(shù)學考試中,成績分布近似服從正態(tài)分布N(110,100),則分數(shù)位于區(qū)間(130,150]分的考生人數(shù)近似為( ) (已知若X~N(μ,σ2),則P(μ﹣σ<X<μ+σ)=0.6826,P(μ﹣2σ<X<μ+2σ)=0.9544,P(μ﹣3σ<X<μ+3σ)=0.9974.
A.1140
B.1075
C.2280
D.2150

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是定義在上的偶函數(shù),且當時,.現(xiàn)已畫出函數(shù)軸左側的圖象,如圖所示,根據(jù)圖象:

(1)請將函數(shù)的圖象補充完整并寫出該函數(shù)的增區(qū)間(不用證明).

(2)求函數(shù)的解析式.

(3)若函數(shù),求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中,正確的是( ) ①x∈R,2x>3x;②“x≠3”是“|x|≠3”成立的充分條件;③空間中若直線l若平行于平面α,則α內所有直線均與l是異面直線;④空間中有三個角是直角的四邊形不一定是平面圖形.
A.①③
B.①④
C.②④
D.②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= +
(1)求f(x)≥f(4)的解集;
(2)設函數(shù)g(x)=k(x﹣3),k∈R,若f(x)>g(x)對任意的x∈R都成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別是
(1)求角C;
(2)若△ABC的中線CD的長為1,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= (e為自然對數(shù)的底數(shù)).
(1)當a=b=0時,直接寫出f(x)的值域(不要求寫出求解過程);
(2)若a= ,求函數(shù)f(x)的單調區(qū)間;
(3)若f(1)=1,且方程f(x)=1在(0,1)內有解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,曲線C1的參數(shù)方程為 ,(其中φ為參數(shù)),曲線 ,以原點O為極點,x軸的正半軸為極軸建立極坐標系,射線l:θ=α(ρ≥0)與曲線C1 , C2分別交于點A,B(均異于原點O)
(1)求曲線C1 , C2的極坐標方程;
(2)當 時,求|OA|2+|OB|2的取值范圍.

查看答案和解析>>

同步練習冊答案