精英家教網 > 高中數學 > 題目詳情

【題目】在直角坐標系xOy中,曲線C1的參數方程為 ,(其中φ為參數),曲線 ,以原點O為極點,x軸的正半軸為極軸建立極坐標系,射線l:θ=α(ρ≥0)與曲線C1 , C2分別交于點A,B(均異于原點O)
(1)求曲線C1 , C2的極坐標方程;
(2)當 時,求|OA|2+|OB|2的取值范圍.

【答案】
(1)解:∵ ,∴ ,

得曲線C1的極坐標方程為 ,

∵x2+y2﹣2y=0,∴曲線C2的極坐標方程為ρ=2sinθ


(2)解:由(1)得 ,|OB|22=4sin2α,

,∴1<1+sin2α<2,∴

∴|OA|2+|OB|2的取值范圍為(2,5)


【解析】(1)求出普通方程,再求曲線C1 , C2的極坐標方程;(2)當 時,由(1)得 ,|OB|22=4sin2α,即可求|OA|2+|OB|2的取值范圍.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某公司計劃明年用不超過6千萬元的資金投資于本地養(yǎng)魚場和遠洋捕撈隊.經過本地養(yǎng)魚場年利潤率的調研,得到如圖所示年利潤率的頻率分布直方圖.對遠洋捕撈隊的調研結果是:年利潤率為60%的可能性為0.6,不賠不賺的可能性為0.2,虧損30%的可能性為0.2.假設該公司投資本地養(yǎng)魚場的資金為x(x≥0)千萬元,投資遠洋捕撈隊的資金為y(y≥0)千萬元.
(1)利用調研數據估計明年遠洋捕撈隊的利潤ξ的分布列和數學期望Eξ.
(2)為確保本地的鮮魚供應,市政府要求該公司對本地養(yǎng)魚場的投資不得低于遠洋捕撈隊的一半.適用調研數據,給出公司分配投資金額的建議,使得明年兩個項目的利潤之和最大.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,已知
(1)求角B的大。
(2)若b= ,a+c=3,求△ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】執(zhí)行如圖框圖,已知輸出的s∈[0,4],若輸入的t∈[m,n],則實數n﹣m的最大值為(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知a,b,c分別是△ABC的內角A,B,C所對的邊,a=2bcosB,b≠c.
(1)證明:A=2B;
(2)若a2+c2=b2+2acsinC,求A.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C: 的左右焦點與其短軸的一個端點是正三角形的三個頂點,點D 在橢圓C上,直線l:y=kx+m與橢圓C相交于A、P兩點,與x軸、y軸分別相交于點N和M,且PM=MN,點Q是點P關于x軸的對稱點,QM的延長線交橢圓于點B,過點A、B分別作x軸的垂涎,垂足分別為A1、B1
(1)求橢圓C的方程;
(2)是否存在直線l,使得點N平分線段A1B1?若存在,求求出直線l的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,長方體ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,點E,F分別在A1B1,D1C1上,A1E=D1F=4.過點E,F的平面與此長方體的面相交,交線圍成一個正方形。

(1)(I)在圖中畫出這個正方形(不必說明畫法與理由);
(2)(II)求平面 把該長方體分成的兩部分體積的比值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,長方形ABCD的邊AB=2,BC=1,O是AB的中點,點P沿著邊BC,CD與DA運動,記BOP=x,將動P到A、B兩點距離之和表示為x的函數f(x),則y=f(x)的圖像大致為()

A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(2015·四川)如圖,四邊形ABCD和ADPQ均為正方形,它們所在的平面互相垂直,動點M在線段PQ上,E、F分別為AB、BC的中點。設異面直線EM與AF所成的角為,則cos的最大值為 .

查看答案和解析>>

同步練習冊答案