如圖所示,在四棱錐P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是D的中點.證明:CD⊥平面PAE.
考點:直線與平面垂直的判定
專題:空間位置關(guān)系與距離
分析:連接AC,先利用勾股定理求得AC,推斷出AC=AD,進而根據(jù)E為中點推斷出AE⊥DC,同時利用線面垂直的性質(zhì)推斷出PA⊥CD,最后利用線面垂直的判定定理得證.
解答: 解:連接AC,
在Rt△ABC中,AC=
AB2+BC2
=5,
∴AC=AD,
∵E是CD的中點,
∴AE⊥DC,
∵PA⊥平面ABCD,CD?平面ABCD,
∴PA⊥CD,
∵PA?平面PAE,AE?平面PAE,
∴CD⊥平面PAE.
點評:本題主要考查了線面垂直的判定定理的應(yīng)用.證明的關(guān)鍵是證明出線線垂直.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

π
2
-
π
2
(x3+sinx)dx=( 。
A、0
B、2
C、
π4
32
D、
π4
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖已知四棱錐S-ABCD的底面是直角梯形,AB∥DC,∠DAB=90°,SA⊥底面ABCD,且SA=AD=DC=
1
2
AB=1,M是SB的中點.
(1)證明:平面SAD⊥平面SCD;
(2)求AC與SB所成角的余弦值;
(3)求二面角M-AC-B的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為進行科學(xué)實驗,觀測小球A、B在兩條相交成60°角的直線型軌道上運動的情況,如圖所示,運動開始前,A和B分別距O點3m和1m,后來它們同時以每分鐘4m的速度各沿軌道l1、l2按箭頭的方向運動.問:
(1)運動開始前,A、B的距離是多少米?
(2)幾分鐘后,兩個小球的距離最小?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在(-1,1)上的單調(diào)函數(shù)f(x)=
ax+b
x2+1
為奇函數(shù),且f(
1
2
)=
2
5

(Ⅰ)求f(x)的解析式;
(Ⅱ)解不等式f(t-1)+f(t)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈R,設(shè)P:函數(shù)y=ax在R上遞增,Q:關(guān)于x的不等式ax2-ax+1>0對?x∈R恒成立.如果P且Q為假,P或Q為真,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的方程x2+y2-2x+4y-m=0.
(1)若點A(m,-2)在圓C的內(nèi)部,求m的取值范圍;
(2)若當(dāng)m=4時①設(shè)P(x,y)為圓C上的一個動點,求(x-4)2+(y-2)2的最值;②問是否存在斜率是1的直線l,使l被圓C截得的弦AB,以AB為直徑的圓經(jīng)過原點,若存在,寫出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓中心在坐標原點,焦點在x軸上,短軸端點和焦點組成邊長為5的菱形,橢圓的離心率為e=
4
5
.  
(1)求橢圓標準方程;
(2)設(shè)點p是橢圓上的動點,記p點到直線l:4x-5y+40=0的距離為d,求d的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角θ終邊上一點P(-2,-1),求 sinθ,cosθ和tanθ的值.

查看答案和解析>>

同步練習(xí)冊答案