6.兩個相關(guān)變量滿足如下關(guān)系:
x23456
y25505664
根據(jù)表格已得回歸方程:$\hat y$=9.4x+9.2,表中有一數(shù)據(jù)模糊不清,請推算該數(shù)據(jù)是( 。
A.37.4B.39C.38.5D.40.5

分析 根據(jù)回歸方程過樣本中心點,求得$\overline{y}$的值,從而求得看不清的數(shù)據(jù)a.

解答 解:計算$\overline{x}$=$\frac{1}{5}$×(2+3+4+5+6)=4,
根據(jù)回歸方程$\hat y$=9.4x+9.2過樣本中心點,
得$\overline{y}$=9.4×4+9.2=46.8;
設(shè)看不清的數(shù)據(jù)為a,則25+a+50+56+64=5$\overline{y}$=234,
解得a=39.
故選:C.

點評 本題考查了回歸直線方程過樣本中心點的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.口袋中有6個大小相同的小球,其中1個小球標(biāo)有數(shù)字“3”,2個小球標(biāo)有數(shù)字“2”,3個小球標(biāo)有數(shù)字“1”,每次從中任取一個小球,取后放回,連續(xù)抽取兩次.
(I)求兩次取出的小球所標(biāo)數(shù)字不同的概率;
(II)記兩次取出的小球所標(biāo)數(shù)字之和為X,求事件“X≥5”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,已知四邊形ABCD是正方形,EA⊥平面ABCD,PD∥EA,AD=PD=2EA=2,G、H分別為BP、BE、PC的中點.
(1)求證:GH∥平面ADPE;
(2)M是線段PC上一點,且PM=$\frac{3\sqrt{2}}{2}$,證明:PB⊥平面EFM.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在三棱柱ABC-A1B1C1中,側(cè)面ABB1A1為矩形,AB=2,AA1=2$\sqrt{2}$,D是AA1的中點,BD與AB1交于點O,且CO⊥平面ABB1A1
(Ⅰ)證明:平面AB1C⊥平面BCD;
(Ⅱ)若OC=OA,△AB1C的重心為G,求直線GD與平面ABC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.復(fù)數(shù)$\frac{2}{1+i}$=1-i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若偶函數(shù)f(x)在(-∞,0]上單調(diào)遞減,a=log2$\frac{1}{3}$,b=log4$\frac{1}{5}$,c=${2^{\frac{3}{2}}}$,則f(a),f(b),f(c)滿足( 。
A.f(a)<f(b)<f(c)B.f(b)<f(a)<f(c)C.f(c)<f(a)<f(b)D.f(c)<f(b)<f(a)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)函數(shù)y=f(x)在x=x0處取得極小值,則必有( 。
A.f′(x0)=0B.f″(x0)>0
C.f′(x0)=0且f″(x0)>0D.f′(x0)=0或f′(x0)不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)g(x)=2x3+(2a+1)x+$\frac{1}{2}$,若曲線y=g(x)與x軸相切,則a的值為$-\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)函數(shù)f(x)是定義在(-∞,0)上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f'(x),且有2f(x)+xf'(x)>x2,則不等式(x+2017)2f(x+2017)-f(-1)<0的解集為(-2018,-2017).

查看答案和解析>>

同步練習(xí)冊答案