【題目】執(zhí)行如圖所示的程序框圖,則輸出的s的值是( )
A. 3 B. -3 C. -4 D. 4
【答案】B
【解析】
根據(jù)程序框圖,將每一次i值代入循環(huán)結(jié)構(gòu)進(jìn)行判斷,直到不滿足循環(huán)條件為止.
第一次,1>6不成立,1不是偶數(shù),故s=0+1=1,i=1+1=2;第二次,2>6不成立,2是偶數(shù),故s=1-2=-1,i=2+1=3;第三次,3>6不成立,3不是偶數(shù),故s=-1+3=2,i=3+1=4;第四次,4>6不成立,4是偶數(shù),故s=2-4=-2,i=4+1=5;第五次,5>6不成立,5不是偶數(shù),故s=-2+5=3,i=5+1=6;第六次,6>6不成立,6是偶數(shù),故s=3-6=-3,i=6+1=7;第七次,7>6成立,輸出s=-3.
故答案為:B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=x(ex﹣1)﹣ax2(e=2.71828…是自然對數(shù)的底數(shù)).
(1)若 ,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)在(﹣1,0)內(nèi)無極值,求a的取值范圍;
(3)設(shè)n∈N* , x>0,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題為真命題的是( )
A. “若a=b,則|a|=|b|”的逆命題
B. 命題“x0∈R,x0+<2”的否定
C. “面積相等的三角形全等”的否命題
D. “若A∩B=B,則AB”的逆否命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若按右側(cè)算法流程圖運(yùn)行后,輸出的結(jié)果是 ,則輸入的N的值可以等于( )
A.4
B.5
C.6
D.7
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=-x3+x2+b,g(x)=aln x.
(1)若f(x)在 上的最大值為,求實數(shù)b的值;
(2)若對任意x∈[1,e],都有g(shù)(x)≥-x2+(a+2)x恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=﹣2cosx﹣x+(x+1)ln(x+1),g(x)=k(x2+ ).其中k≠0.
(1)討論函數(shù)g(x)的單調(diào)區(qū)間;
(2)若存在x1∈(﹣1,1],對任意x2∈( ,2],使得f(x1)﹣g(x2)<k﹣6成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義方程f(x)=f′(x)的實數(shù)根x0為函數(shù)f(x)的“和諧點(diǎn)”.如果函數(shù)g(x)=x2(x∈(0,+∞)),h(x)=sin x+2cosx,φ(x)=ex+x的“和諧點(diǎn)”分別為a,b,c,則a,b,c的大小關(guān)系是( )
A. a<b<c B. b<c<a
C. c<b<a D. c<a<b
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=sin(ωx﹣ )﹣2cos2 +1(ω>0),直線y= 與函數(shù)f(x)的圖象相鄰兩交點(diǎn)的距離為π.
(1)求ω的值;
(2)在銳角△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c,若點(diǎn)( ,0)是函數(shù)y=f(x)圖象的一個對稱中心,求sinA+sinC的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知復(fù)數(shù)z1,z2在復(fù)平面內(nèi)對應(yīng)的點(diǎn)分別為A(-2,1),B(a,3).
(1)若|z1-z2|=,求a的值;
(2)復(fù)數(shù)z=z1·z2對應(yīng)的點(diǎn)在第一、三象限的角平分線上,求a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com