【題目】設(shè)函數(shù)f(x)=sin(ωx﹣ )﹣2cos2 +1(ω>0),直線y= 與函數(shù)f(x)的圖象相鄰兩交點(diǎn)的距離為π.
(1)求ω的值;
(2)在銳角△ABC中,內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,若點(diǎn)( ,0)是函數(shù)y=f(x)圖象的一個(gè)對(duì)稱中心,求sinA+sinC的取值范圍.
【答案】
(1)解:f(x)=sin(ωx﹣ )﹣2cos2 +1
= sinωx﹣ cosωx﹣cosωx= sinωx﹣ cosωx
=
∵直線y= 與函數(shù)f(x)的圖象相鄰兩交點(diǎn)的距離為π,
∴周期T= ,解得ω=2
(2)解:∵點(diǎn)( ,0)是函數(shù)y=f(x)圖象的一個(gè)對(duì)稱中心,
∴2× ﹣ =kπ(k∈Z),則B=kπ+ (k∈Z),
由0<B<π得B= ,
則C=π﹣A﹣B= ,
因?yàn)殇J角三角形 所以 ,得
所以sinA+sinC=sinA+sin( )
=sinA+ cosA+ sinA= sinA+ cosA
=
由 得, ,
則 ,
所以
【解析】(1)利用二倍角余弦公式及變形,兩角差的正弦公式化簡解析式,由題意和正弦函數(shù)的圖象與性質(zhì)求出周期,由三角函數(shù)的周期公式求出ω的值;(2)由正弦函數(shù)圖象的對(duì)稱中心和題意列出方程,由內(nèi)角的范圍求出角B,根據(jù)內(nèi)角和定理用A表示出C,由銳角三角形列出不等式組,求出A的范圍,代入sinA+sinC利用兩角和差的正弦公式化簡,由整體思想、正弦函數(shù)的圖象與性質(zhì),求出sinA+sinC的范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】調(diào)查某醫(yī)院某段時(shí)間內(nèi)嬰兒出生的時(shí)間與性別的關(guān)系,得到下面的數(shù)據(jù):出生時(shí)間在晚上的男嬰為24人,女嬰為8人;出生時(shí)間在白天的男嬰為31人,女嬰為26人.
(1)將2×2列聯(lián)表補(bǔ)充完整.
性別 | 出生時(shí)間 | 總計(jì) | |
晚上 | 白天 | ||
男嬰 | |||
女嬰 | |||
總計(jì) |
(2)能否在犯錯(cuò)誤的概率不超過0.1的前提下認(rèn)為嬰兒性別與出生時(shí)間有關(guān)系?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)滿足:
(1)函數(shù)y=f(x﹣1)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱;
(2)對(duì)x∈R,f( ﹣x)=f( +x)成立
(3)當(dāng)x∈(﹣ ,﹣ ]時(shí),f(x)=log2(﹣3x+1),則f(2011)=( )
A.﹣5
B.﹣4
C.﹣3
D.﹣2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和Sn=pn+q(p≠0且p≠1),求證:數(shù)列{an}為等比數(shù)列的充要條件為q=-1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為分析學(xué)生入學(xué)時(shí)的數(shù)學(xué)成績對(duì)高一年級(jí)數(shù)學(xué)學(xué)習(xí)的影響,在高一年級(jí)學(xué)生中隨機(jī)抽取10名學(xué)生,統(tǒng)計(jì)他們?nèi)雽W(xué)時(shí)的數(shù)學(xué)成績和高一期末的數(shù)學(xué)成績,如下表:
學(xué)生編號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
入學(xué)成績x(分) | 63 | 67 | 45 | 88 | 81 | 71 | 52 | 99 | 58 | 76 |
高一期末 成績y(分) | 65 | 78 | 52 | 82 | 92 | 89 | 73 | 98 | 56 | 75 |
(1)求相關(guān)系數(shù)r;
(2)求y關(guān)于x的線性回歸方程;
(3)若某學(xué)生入學(xué)時(shí)的數(shù)學(xué)成績?yōu)?0分,試估計(jì)他高一期末的數(shù)學(xué)成績.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知復(fù)數(shù).
(1)當(dāng)實(shí)數(shù)m取什么值時(shí),復(fù)數(shù)z是純虛數(shù)?
(2)若z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第二、四象限的角平分線上,求|z|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】環(huán)保部門對(duì)5家造紙廠進(jìn)行排污檢查,若檢查不合格,則必須整改,整改后經(jīng)復(fù)查仍然不合格的,則關(guān)閉.設(shè)每家造紙廠檢查是否合格是相互獨(dú)立的,且每家造紙廠檢查前合格的概率是 ,整改后檢查合格的概率是 ,求:
(Ⅰ)恰好有兩家造紙廠必須整改的概率;
(Ⅱ)至少要關(guān)閉一家造紙廠的概率;
(Ⅲ)平均多少家造紙廠需要整改?(其中( )5≈ )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐E-ABCD中,四邊形ABCD是平行四邊形,△BCE是等邊三角形,△ABE是等腰直角三角形,∠BAE=90°,且AC=BC.
(1)證明:平面ABE⊥平面BCE;
(2)求二面角A-DE-C的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com