【題目】如圖所示,在四棱錐E-ABCD中,四邊形ABCD是平行四邊形,△BCE是等邊三角形,△ABE是等腰直角三角形,∠BAE=90°,且AC=BC.
(1)證明:平面ABE⊥平面BCE;
(2)求二面角A-DE-C的余弦值.
【答案】(1)見(jiàn)解析;(2)
【解析】
(1)證明:設(shè)O為BE的中點(diǎn),連接AO,CO,證得AO⊥BE,CO⊥BE和AO⊥CO,利用面面垂直的判定定理,即可證明;
(2)由(1)可知AO,BE,CO兩兩垂直,以O為坐標(biāo)原點(diǎn),OE,OC,OA分別為x,y,z軸建立空間直角坐標(biāo)系,分別求解平面ADE和平面DEC的一個(gè)法向量,利用向量的夾角公式,即可求解.
(1)證明:設(shè)O為BE的中點(diǎn),連接AO,CO,易知AO⊥BE,CO⊥BE.設(shè)AC=BC=2,則AO=1,CO=,可得AO2+CO2=AC2,所以AO⊥CO.又AO∩BE=O,所以CO⊥平面ABE.
又CO平面BCE,故平面ABE⊥平面BCE.
(2)由(1)可知AO,BE,CO兩兩垂直,
設(shè)OE=1,以O為坐標(biāo)原點(diǎn),OE,OC,OA分別為x,y,z軸建立如圖所示的空間直角坐標(biāo)系O-xyz,則A(0,0,1),E(1,0,0),C(0,,0),易得D(1,,1),故=(1,,0),=(1,0,-1),
=(-1,,0),=(1,0,1).設(shè)n=(x1,y1,z1)是平面ADE的法向量,則即令y1=1,可得n=(-,1,-).設(shè)m=(x2,y2,z2)是平面DEC的法向量,則即令y2=1,可得m=(,1,-),則cos<n,m>==.
易知二面角A-DE-C為銳角,所以二面角A-DE-C的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=sin(ωx﹣ )﹣2cos2 +1(ω>0),直線(xiàn)y= 與函數(shù)f(x)的圖象相鄰兩交點(diǎn)的距離為π.
(1)求ω的值;
(2)在銳角△ABC中,內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,若點(diǎn)( ,0)是函數(shù)y=f(x)圖象的一個(gè)對(duì)稱(chēng)中心,求sinA+sinC的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知復(fù)數(shù)z1,z2在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)分別為A(-2,1),B(a,3).
(1)若|z1-z2|=,求a的值;
(2)復(fù)數(shù)z=z1·z2對(duì)應(yīng)的點(diǎn)在第一、三象限的角平分線(xiàn)上,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若根據(jù)10名兒童的年齡x(歲)和體重y(kg)數(shù)據(jù)用最小二乘法得到用年齡預(yù)報(bào)體重的回歸方程是=2x+7.已知這10名兒童的年齡分別是2歲、3歲、3歲、5歲、2歲、6歲、7歲、3歲、4歲、5歲,則這10名兒童的平均體重大約是( )
A. 14 kg B. 15 kg
C. 16 kg D. 17 kg
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2+ax(a∈R),g(x)= (f′(x)為f(x)的導(dǎo)函數(shù)),若方程g(f(x))=0有四個(gè)不等的實(shí)根,則a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓 =1(a>b>0)的離心率為 ,長(zhǎng)軸長(zhǎng)為4,過(guò)橢圓的左頂點(diǎn)A作直線(xiàn)l,分別交橢圓和圓x2+y2=a2于相異兩點(diǎn)P,Q.
(1)若直線(xiàn)l的斜率為 ,求 的值;
(2)若 =λ ,求實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線(xiàn)C的參數(shù)方程為 (α為參數(shù))以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線(xiàn)l的極坐標(biāo)方程為 .若直線(xiàn)l與曲線(xiàn)C交于A(yíng),B,求線(xiàn)段AB的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四棱錐P-ABCD中,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E,F分別是BC,PC的中點(diǎn).
(1)證明:AE⊥PD;
(2)若AB=2,PA=2,求二面角E-AF-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= ,直線(xiàn)y= x為曲線(xiàn)y=f(x)的切線(xiàn)(e為自然對(duì)數(shù)的底數(shù)).
(1)求實(shí)數(shù)a的值;
(2)用min{m,n}表示m,n中的最小值,設(shè)函數(shù)g(x)=min{f(x),x﹣ }(x>0),若函數(shù)h(x)=g(x)﹣cx2為增函數(shù),求實(shí)數(shù)c的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com