9.如圖,矩形ORTM內(nèi)放置6個(gè)邊長均為1的小正方形,其中A,B,C,D在矩形的邊上,且E為AD的中點(diǎn),則$(\overrightarrow{AE}-\overrightarrow{BC})•\overrightarrow{BD}$=-6.

分析 建立坐標(biāo)系,求出各點(diǎn)坐標(biāo),即可得出答案.

解答 解:以A為原點(diǎn)建立平面直角坐標(biāo)系,如圖所示:
則A(0,0),E(0,1),B(2,-2),C(3,1),D(0,2),
∴$\overrightarrow{AE}$=(0,1),$\overrightarrow{BC}$=(1,3),$\overrightarrow{BD}$=(-2,4),
∴($\overrightarrow{AE}-\overrightarrow{BC}$)•$\overrightarrow{BD}$=(-1,-2)•(-2,4)=2-8=-6.
故答案為:-6.

點(diǎn)評 本題考查了平面向量的數(shù)量積運(yùn)算,建立坐標(biāo)系,轉(zhuǎn)化為坐標(biāo)運(yùn)算可使計(jì)算簡便,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知等差數(shù)列{an}中.
(1)a1=$\frac{3}{2}$,d=-$\frac{1}{2}$,Sn=-15,求n及a12
(2)a1=1,an=-512,Sn=-1022,求d;
(3)S5=24,求a2+a4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)y=2sin(ωx+φ)(ω>0)的部分圖象如圖所示,點(diǎn)A(-$\frac{π}{6}$,0)、B、C是該圖象與x軸的交點(diǎn),過點(diǎn)B作直線交該圖象于D、E兩點(diǎn),點(diǎn)F($\frac{7π}{12}$,0)是f(x)的圖象的最高點(diǎn)在x軸上的射影,則($\overrightarrow{AD}$-$\overrightarrow{EA}$)•(ω$\overrightarrow{AC}$)的值是(  )
A.2B.π2
C.2D.以上答案均不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知直線l與直線m:x+2y+4交于x軸上的一點(diǎn),且l⊥m,則直線l的方程為2x-y+8=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知$\overrightarrow{OA}$=(1,2),$\overrightarrow{OB}$=(-4,y),且$\overrightarrow{OA}⊥\overrightarrow{OB}$,則|$\overrightarrow{AB}$|=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知cosα=$\frac{12}{13}$,α∈($\frac{3π}{2}$,2π),求(sin$\frac{α}{2}$-cos$\frac{α}{2}$)2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.實(shí)數(shù)a,b滿足:(2a)ln2=(3b)ln3和3lna=2lnb,則a=$\frac{1}{2}$,b=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.化簡:
(1)$\frac{cosα}{1-sinα}$=$\frac{1+sinα}{cosα}$;
(2)$\frac{tanαsinα}{tanα-sinα}$=$\frac{tanα+sinα}{tanαsinα}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在平面直角坐標(biāo)系xOy中,圓x2+y2=4上的一點(diǎn)P(x0,y0)(x0,y0>0)處的切線l分別交x軸,y軸于點(diǎn)A,B,以A,B為頂點(diǎn)且以O(shè)為中心的橢圓記作C,直線OP交C于M,N兩點(diǎn).
(1)若橢圓C的離心率為$\frac{{\sqrt{6}}}{3}$,求P點(diǎn)的坐標(biāo)
(2)證明四邊形AMBN的面積S>8$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊答案