【題目】已知函數(shù)f(x)=(a﹣bx3)ex﹣ ,且函數(shù)f(x)的圖象在點(diǎn)(1,e)處的切線(xiàn)與直線(xiàn)x﹣(2e+1)y﹣3=0垂直.
(Ⅰ)求a,b;
(Ⅱ)求證:當(dāng)x∈(0,1)時(shí),f(x)>2.
【答案】解:(Ⅰ)因?yàn)閒(1)=e,故(a﹣b)e=e,故a﹣b=1①; 依題意,f′(1)=﹣2e﹣1;又 ,
故f′(1)=ae﹣1﹣4be=﹣2e﹣1,故a﹣4b=﹣2②,
聯(lián)立①②解得a=2,b=1,
(Ⅱ)證明:由(Ⅰ)得
要證f(x)>2,即證2ex﹣exx3>2+ ;
令g(x)=2ex﹣exx3 , ∴g′(x)=ex(﹣x3﹣3x2+2)=﹣ex(x3+3x2﹣2)=﹣ex(x+1)(x2+2x﹣2),
故當(dāng)x∈(0,1)時(shí),﹣ex<0,x+1>0;
令p(x)=x2+2x﹣2,因?yàn)閜(x)的對(duì)稱(chēng)軸為x=﹣1,且p(0)p(1)<0,
故存在x0∈(0,1),使得p(x0)=0;
故當(dāng)x∈(0,x0)時(shí),p(x)=x2+2x﹣2<0,g′(x)=﹣ex(x+1)(x2+2x﹣2)>0,
即g(x)在(0,x0)上單調(diào)遞增;
當(dāng)x∈(x0 , 1)時(shí),p(x)=x2+2x﹣2>0,故g′(x)=﹣ex(x+1)(x2+2x﹣2)<0,
即g(x)在(x0 , 1)上單調(diào)遞減;因?yàn)間(0)=2,g(1)=e,
故當(dāng)x∈(0,1)時(shí),g(x)>g(0)=2,
又當(dāng)x∈(0,1)時(shí), ,∴
所以2ex﹣exx3>2+ ,即f(x)>2
【解析】(Ⅰ)根據(jù)函數(shù)f(x)的圖象在點(diǎn)(1,e)處的切線(xiàn)與直線(xiàn)x﹣(2e+1)y﹣3=0垂直,求得a,b;(Ⅱ)由(Ⅰ)得 ,證f(x)>2,即證2ex﹣exx3>2+ ,構(gòu)造函數(shù),確定函數(shù)的單調(diào)性,即可證明結(jié)論.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解函數(shù)的最大(小)值與導(dǎo)數(shù)(求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求的單調(diào)區(qū)間;
(2)證明:當(dāng)時(shí),方程在區(qū)間上只有一個(gè)解;
(3)設(shè),其中.若恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x﹣2|+|2x+1|.
(Ⅰ)解不等式f(x)>5;
(Ⅱ)若關(guān)于x的方程 =a的解集為空集,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)傳統(tǒng)文化中很多內(nèi)容體現(xiàn)了數(shù)學(xué)的對(duì)稱(chēng)美,如圖所示的太極圖是由黑白兩個(gè)魚(yú)形紋組成的圓形圖案,充分展現(xiàn)了相互轉(zhuǎn)化、對(duì)稱(chēng)統(tǒng)一的形式美、和諧美,給出定義:能夠?qū)AO的周長(zhǎng)和面積同時(shí)平分的函數(shù)稱(chēng)為這個(gè)圓的“優(yōu)美函數(shù)”,給出下列命題:
①對(duì)于任意一個(gè)圓O,其“優(yōu)美函數(shù)“有無(wú)數(shù)個(gè)”;
②函數(shù) 可以是某個(gè)圓的“優(yōu)美函數(shù)”;
③正弦函數(shù)y=sinx可以同時(shí)是無(wú)數(shù)個(gè)圓的“優(yōu)美函數(shù)”;
④函數(shù)y=f(x)是“優(yōu)美函數(shù)”的充要條件為函數(shù)y=f(x)的圖象是中心對(duì)稱(chēng)圖形.
其中正確的命題是( )
A.①③
B.①③④
C.②③
D.①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列四個(gè)命題,其中正確的命題是____.(填出所有正確命題的序號(hào))
①x=是y=sin(2x+)的一條對(duì)稱(chēng)軸;
②y=esin2x是以π為周期在(0,)上的增函數(shù);
③函數(shù)y=3sin(2x+)的圖象可由y=3sin2x的圖象向左平移個(gè)單位得到.
④設(shè)x1、x2是關(guān)于x的方程|logax|=k(a>0,a≠1,k>0)的兩根,則x1x2=1;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)若,且,求的最小值;
(2)若,且在上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解本校學(xué)生在校小賣(mài)部的月消費(fèi)情況,隨機(jī)抽取了60名學(xué)生進(jìn)行統(tǒng)計(jì).得到如下樣本頻數(shù)分布表:
月消費(fèi)金額(單位:元) | ||||||
人數(shù) | 30 | 6 | 9 | 10 | 3 | 2 |
記月消費(fèi)金額不低于300元為“高消費(fèi)”,已知在樣本中隨機(jī)抽取1人,抽到是男生“高消費(fèi)”的概率為.
(1)從月消費(fèi)金額不低于400元的學(xué)生中隨機(jī)抽取2人,求至少有1人月消費(fèi)金額不低于500元的概率;
(2)請(qǐng)將下面的列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為“高消費(fèi)”與“男女性別”有關(guān),說(shuō)明理由.
高消費(fèi) | 非高消費(fèi) | 合計(jì) | |
男生 | |||
女生 | 25 | ||
合計(jì) | 60 |
下面的臨界值表僅供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解學(xué)生的學(xué)習(xí)情況,某學(xué)校在一次考試中隨機(jī)抽取了20名學(xué)生的成績(jī),分成[50,60),[60,70),[70,80),[80,90),[90,100]五組,繪制了如圖所示頻率分布直方圖.求:
(Ⅰ)圖中m的值;
(II)估計(jì)全年級(jí)本次考試的平均分;
(III)若從樣本中隨機(jī)抽取分?jǐn)?shù)在[80,100]的學(xué)生兩名,求所抽取兩人至少有一人分?jǐn)?shù)不低于90分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知符號(hào)函數(shù)sgnx= ,f(x)是R上的增函數(shù),g(x)=f(x)﹣f(ax)(a>1),則( )
A.sgn[g(x)]=sgnx
B.sgn[g(x)]=﹣sgnx
C.sgn[g(x)]=sgn[f(x)]
D.sgn[g(x)]=﹣sgn[f(x)]
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com