12.求函數(shù)f(x)=x2的圖象與直線f(x)=2x的交點個數(shù).

分析 函數(shù)y=2x與y=x2的圖象的交點個數(shù)即 函數(shù)f(x)=2x-x2 的零點的個數(shù),顯然,x=2和x=4是函數(shù)f(x)的兩個零點.再由可得函數(shù)在區(qū)間(-1,0)上有一個零點,從而得出結(jié)論

解答 解:函數(shù)y=2x與y=x2的圖象的交點個數(shù)即 函數(shù)f(x)=2x-x2 的零點的個數(shù).
顯然,x=2和x=4是函數(shù)f(x)的兩個零點.
再由f(-1)=$\frac{1}{2}$-1=-$\frac{1}{2}$<0,f(0)=1-0=1,可得f(-1)f(0)<0,故函數(shù)在區(qū)間(-1,0)上有一個零點.
故函數(shù)y=2x與y=x2的圖象的交點個數(shù)為3個.

點評 本題主要考查函數(shù)的零點的定義,函數(shù)的零點與方程的根的關(guān)系,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)A={x|1<x<2},B={x|x<a},若A?B,則實數(shù)a的取值范圍是( 。
A.a≥2B.a≤2C.a>2D.a<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.將函數(shù)f(x)=sin(2x+φ)(|φ|<$\frac{π}{2}$)的圖象向左平移$\frac{π}{6}$個單位長度后,所得函數(shù)g(x)為奇函數(shù),則函數(shù)f(x)在[0,$\frac{π}{2}$]上的最小值( 。
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.給出下列數(shù)列:
(1)0,0,0,…;
(2)1,11,111,1111,…;
(3)1,2,3,5,8,…;
(4)-5,-3,-1,1,3,…;
(5)2,4,8,16,….
其中等差數(shù)列有( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列各組對象能構(gòu)成集合的是(  )
A.充分接近$\sqrt{5}$的所有實數(shù)B.所有的正方形
C.著名的數(shù)學(xué)家D.1,2,3,3,4,4,4,4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知f(x)是定義在R的偶函數(shù),若f(x)在(-∞,0)上單調(diào)遞增,則f(-1)>f(2)(填“>”“=”“<”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.寫出求$\frac{1}{1×4}$+$\frac{1}{2×5}$+$\frac{1}{3×6}$+…+$\frac{1}{97×100}$的和的框圖及程序語句.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.直線y=x+1的傾斜角是$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知a,b是平面α內(nèi)的兩條不同直線,直線l在平面α外,則l⊥a,l⊥b是l⊥α的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案