3.將函數(shù)f(x)=sin(2x+φ)(|φ|<$\frac{π}{2}$)的圖象向左平移$\frac{π}{6}$個(gè)單位長度后,所得函數(shù)g(x)為奇函數(shù),則函數(shù)f(x)在[0,$\frac{π}{2}$]上的最小值(  )
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

分析 由條件利用y=Asin(ωx+φ)的圖象變換規(guī)律,求出g(x)的解析式,再根據(jù)題意求x∈[0,$\frac{π}{2}$]時(shí)的最小值即可.

解答 解:∵函數(shù)f(x)=sin(2x+φ)的圖象向左平移$\frac{π}{6}$個(gè)單位后所得圖象對應(yīng)的函數(shù)解析式為:
y=sin[2(x+$\frac{π}{6}$)+φ]=sin(2x+$\frac{π}{3}$+φ)為奇函數(shù),
∴$\frac{π}{3}$+φ=kπ,即φ=kπ-$\frac{π}{3}$,k∈Z;
∵|φ|<$\frac{π}{2}$,
∴φ=-$\frac{π}{3}$,
∴f(x)=sin(2x-$\frac{π}{3}$);
又x∈[0,$\frac{π}{2}$],∴2x∈[0,π],2x-$\frac{π}{3}$∈[-$\frac{π}{3}$,$\frac{2π}{3}$],
∴-$\frac{\sqrt{3}}{2}$≤sin(2x+$\frac{π}{6}$)≤1;
∴函數(shù)f(x)在[0,$\frac{π}{2}$]上的最小值-$\frac{\sqrt{3}}{2}$.
故選:A.

點(diǎn)評 本題考查了函數(shù)y=Asin(ωx+φ)圖象的變換問題,也考查了三角函數(shù)在閉區(qū)間上的最值問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若對于曲線f(x)=-ex-x上任意點(diǎn)處的切線l1,總存在g(x)=2ax+sinx上一點(diǎn)處的切線l2,使得l1⊥l2,則實(shí)數(shù)a的取值范圍是[0,$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若不等式x2-ax+1≤0和ax2+x-1>0對任意的x∈R均不成立,則實(shí)數(shù)a的取值范圍是( 。
A.$(-∞,-\frac{1}{4})∪[{2,+∞})$B.$[{-\frac{1}{4},2})$C.$[{-2,-\frac{1}{4}})$D.$({-2,-\frac{1}{4}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)y=$\frac{2}{cosx}$+$\frac{cosx}{2}$(0≤x<$\frac{π}{2}$)的最小值為(  )
A.2B.$\frac{25}{12}$C.$\frac{9}{4}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在正方體ABCD-A1B1C1D1中E,G,H分別為BC,C1D1,AA1的中點(diǎn).
( 1)求證:EG∥平面BDD1B1
( 2)求異面直線B1H與 EG所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.甲、乙兩人隨意住兩間空房,則甲、乙兩人各住一間房的概率是0.5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知有三個(gè)數(shù)a=2-2,b=40.9,c=80.25,則它們的大小關(guān)系是(  )
A.a<c<bB.a<b<cC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.求函數(shù)f(x)=x2的圖象與直線f(x)=2x的交點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知集合A={x∈R|0<ax+1≤5},B={x∈R|$\frac{1}{2}$<x+1≤2}(a≠0)
(1)A,B能否相等?若能,求出實(shí)數(shù)a的值;若不能,試說明理由;
(2)若命題p:x∈A,命題q:x∈B,且p是q充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案