20.以平面直角坐標原點為極點,x軸正半軸為極軸,則直角坐標為(-2,2)的點的極坐標為( 。
A.(2$\sqrt{2}$,$\frac{π}{4}$)B.(2$\sqrt{2}$,$\frac{3π}{4}$)C.(2,$\frac{π}{4}$)D.(2,$\frac{3π}{4}$)

分析 利用 $\left\{\begin{array}{l}{ρ=\sqrt{{x}^{2}{+y}^{2}}}\\{tanθ=\frac{y}{x}}\end{array}\right.$即可得出.

解答 解:∵ρ=$\sqrt{{(-2)}^{2}{+2}^{2}}$=2$\sqrt{2}$,tanθ=-1,
θ∈(0,π),解得θ=$\frac{3π}{4}$,
∴點M的極坐標為(2$\sqrt{2}$,$\frac{3π}{4}$).
故選:B.

點評 本題考查了直角坐標化為極坐標的方法,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

10.根據(jù)浙江省新高考方案,每位考生除語、數(shù)、外3門必考科目外,有3門選考科目,并且每門選考科目都有2次考試機會,每年有兩次考試時間,某考生為了取得最好成績,將3門選考科目共6次考試機會安排在高二與高三的4次考試中,且每次至多考2門,則該考生共有114 種不同的考試安排方法.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.閱讀程序框圖,并完成下列問題:
(1)若輸入x=0,求輸出的結(jié)果;
(2)請將該程序框圖改成分段函數(shù)解析式;
(3)若輸出的函數(shù)值在區(qū)間$[{\frac{1}{4},\frac{1}{2}}]$內(nèi),求輸入的實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.復(fù)數(shù)z=-1+2i,則z在復(fù)平面內(nèi)對應(yīng)的點所在象限為( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.電視連續(xù)劇《人民的名義》自2017年3月28日在湖南衛(wèi)視開播以來,引發(fā)各方關(guān)注,收視率、點擊率均占據(jù)各大排行榜首位.我們用簡單隨機抽樣的方法對這部電視劇的觀看情況進行抽樣調(diào)查,共調(diào)查了600人,得到結(jié)果如下:其中圖1是非常喜歡《人民的名義》這部電視劇的觀眾年齡的頻率分布直方圖;表1是不同年齡段的觀眾選擇不同觀看方式的人數(shù). 
觀看方式
年齡(歲)
電視網(wǎng)絡(luò)
[15,45)150250
[45,65]12080
求:(I)假設(shè)同一組中的每個數(shù)據(jù)用該組區(qū)間的中點值代替,求非常喜歡《人民的名義》這部電視劇的觀眾的平均年齡;
(II)根據(jù)表1,通過計算說明我們是否有99%的把握認為觀看該劇的方式與年齡有關(guān)?
P(K2≥k00.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知a<-1,函數(shù)f(x)=|x3-1|+x3+ax(x∈R).
(Ⅰ)求函數(shù)f(x)的最小值;
(Ⅱ)已知存在實數(shù)m,n(m<n≤1),對任意t0∈(m,n),總存在兩個不同的t1,t2∈(1,+∞),
使得f(t0)-2=f(t1)=f(t2),求證:$n-m≤\frac{4}{27}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.函數(shù)f(x)=$\sqrt{27-{3}^{x}}$+log2(x+2)的定義域為(  )
A.(-2,3)B.(-2,3]C.(0,3)D.(0,3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.在下列五個命題中:
①已知大小分別為1N與2N的兩個力,要使合力大小恰為$\sqrt{6}N$,則它們的夾角為$\frac{π}{3}$;
②已知$α=\frac{2π}{5}$,$β=-\frac{π}{7}$,則sinα<cosβ;
③若A,B,C是斜△ABC的三個內(nèi)角,則恒有tanA+tanB+tanC=tanAtanBtanC成立;
④$計算式子sin{50^0}(1+\sqrt{3}tan{10^0})的結(jié)果是\frac{1}{2}$;
⑤已知$\sqrt{3}(cosx+1)=sinx且x∈(0,\frac{3π}{2})$,則x的大小為$\frac{2π}{3}$;
其中錯誤的命題有①②④⑤.(寫出所有錯誤命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知c=2,cosB=$\frac{1}{3}$.
(1)若b=2$\sqrt{2}$,求sinA的值;
(2)若點D在邊AC上,且$\overrightarrow{DC}$=$\frac{1}{3}$$\overrightarrow{AC}$,|$\overrightarrow{BD}$|=$\frac{4\sqrt{3}}{3}$,求a的值.

查看答案和解析>>

同步練習冊答案