18.某公司現(xiàn)有職員160人,中級管理人員30人,高級管理人員10人,要從其中抽取20人進行體檢,如果采用分層抽樣的方法,則職員、中級管理人員和高級管理人員應(yīng)該各抽取人數(shù)為(  )
A.8,15,7B.16,2,2C.16,3,1D.12,5,3

分析 根據(jù)所給的三個層次的人數(shù),得到公司的總?cè)藬?shù),利用要抽取的人數(shù)除以總?cè)藬?shù),得到每個個體被抽到的概率,用概率乘以三個層次的人數(shù),得到結(jié)果.

解答 解:∵公司現(xiàn)有職員160人,中級管理人員30人,高級管理人員10人
∴公司共有160+30+10=200人,
∵要從其中抽取20個人進行身體健康檢查,
∴每個個體被抽到的概率是$\frac{20}{200}$=$\frac{1}{10}$,
∴職員要抽取160×$\frac{1}{10}$=16人,
中級管理人員30×$\frac{1}{10}$=3人,
高級管理人員10×$\frac{1}{10}$=1人,
即抽取三個層次的人數(shù)分別是16,3,1
故選C.

點評 本題考查分層抽樣方法,解題的主要依據(jù)是每個個體被抽到的概率相等,主要是一些比較小的數(shù)字的運算,本題是一個基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.命題P:“如果a+b>0,那么a>0且b>0.”寫出命題P的否命題:“如果a+b≤0,那么a≤0或b≤0.”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知定義域為(0,+∞)、值域為R的函數(shù)f(x),對于任意x,y∈(0,+∞)總有f(xy)=f(x)+f(y).當(dāng)x>1時,恒有f(x)>0.
(1)求證:f(x)必有反函數(shù);
(2)設(shè)f(x)的反函數(shù)是f-1(x),若不等式f-1(-4x+k•2x-1)<1對任意的實數(shù)x恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在平面直角坐標(biāo)系中,給定點P(m,n),其中$m={log_3}27,n=2lg\sqrt{10}$,
(1)求過P且與直線2x+y-5=0垂直的直線l1的方程;
(2)若直線l2平行于過點A(m-2,n-2)和B(0,2)的直線,且這兩條直線間的距離為$\frac{{2\sqrt{17}}}{17}$,求直線l2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.過點A(4,a)和B(5,b)的直線與直線y=2x+m平行,則|AB|=(  )
A.2B.$\sqrt{2}$C.5D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)函數(shù)f(x)=eax+λlnx,其中a<0,e是自然對數(shù)的底數(shù)
(Ⅰ)若f(x)是(0,+∞)上的單調(diào)函數(shù),求λ的取值范圍;
(Ⅱ)若0<λ<$\frac{1}{e}$,證明:函數(shù)f(x)有兩個極值點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知O為坐標(biāo)原點,F(xiàn)是橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左焦點,A、B分別為橢圓C的左、右頂點,P為橢圓C上一點,且PF⊥x軸.過頂點A的直線l與線段PF交于點M,與y軸交于點E.若直線BM經(jīng)過OE的中點,則橢圓C的離心率為( 。
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)f(x)=|cosx|的最小正周期為(  )
A.B.πC.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知x1>0,x2>0,x1+x2<ex1x2(e為自然對數(shù)的底數(shù)),則( 。
A.x1+x2>1B.x1+x2<1C.$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$<$\frac{1}{e}$D.$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$>$\frac{1}{e}$

查看答案和解析>>

同步練習(xí)冊答案