【題目】在直角坐標(biāo)系中,以為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.已知曲線的參數(shù)方程為(為參數(shù),),曲線的極坐標(biāo)方程為,點(diǎn)是與的一個(gè)交點(diǎn),其極坐標(biāo)為.設(shè)射線與曲線相交于,兩點(diǎn),與曲線相交于,兩點(diǎn).
(1)求,的值;
(2)求的最大值.
【答案】(1);(2)
【解析】
(1)直接利用轉(zhuǎn)換關(guān)系,把參數(shù)方程極坐標(biāo)方程和直角坐標(biāo)方程之間進(jìn)行轉(zhuǎn)換,進(jìn)一步利用點(diǎn)的坐標(biāo)求出結(jié)果.
(2)利用三角函數(shù)關(guān)系式的恒等變換和正弦型函數(shù)的性質(zhì)的應(yīng)用求出結(jié)果.
解:(1)將曲線的參數(shù)方程化成普通方程:,
的直角坐標(biāo)為.
因?yàn)?/span>在上,所以,解得.
因?yàn)?/span>在上,所以,解得.
(2)曲線化為極坐標(biāo)方程:.
設(shè)的極坐標(biāo)為,的極坐標(biāo)為,則,.
因?yàn)?/span>,分別是與,的交點(diǎn),所以.
所以
故,
其中為銳角,且.
因?yàn)?/span>,當(dāng)時(shí)等號(hào)成立.
所以的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題的展開(kāi)式中,僅有第7項(xiàng)的二項(xiàng)式系數(shù)最大,則展開(kāi)式中的常數(shù)項(xiàng)為495;命題隨機(jī)變量服從正態(tài)分布,且,則.現(xiàn)給出四個(gè)命題:①,②,③,④,其中真命題的是( )
A.①③B.①④C.②③D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直三棱柱中,,,點(diǎn),分別為棱,的中點(diǎn).
(1)求證:平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】圓周率是一個(gè)在數(shù)學(xué)及物理學(xué)中普遍存在的數(shù)學(xué)常數(shù),它既常用又神秘,古今中外很多數(shù)學(xué)家曾研究它的計(jì)算方法.下面做一個(gè)游戲:讓大家各自隨意寫下兩個(gè)小于1的正數(shù)然后請(qǐng)他們各自檢查一下,所得的兩數(shù)與1是否能構(gòu)成一個(gè)銳角三角形的三邊,最后把結(jié)論告訴你,只需將每個(gè)人的結(jié)論記錄下來(lái)就能算出圓周率的近似值.假設(shè)有個(gè)人說(shuō)“能”,而有個(gè)人說(shuō)“不能”,那么應(yīng)用你學(xué)過(guò)的知識(shí)可算得圓周率的近似值為()
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中中,曲線C的參數(shù)方程(為參數(shù),).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為.
(1)設(shè)P是曲線C上的一個(gè)動(dòng)點(diǎn),當(dāng)時(shí),求點(diǎn)P到直線的距離的最大值;
(2)若曲線C上所有的點(diǎn)均在直線的右下方,求t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(t為參數(shù)),曲線C2的參數(shù)方程為(α為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn).x軸正半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求曲線C1的普通方程和曲線C2的極坐標(biāo)方程;
(Ⅱ)射線與曲線C2交于O,P兩點(diǎn),射線與曲線C1交于點(diǎn)Q,若△OPQ的面積為1,求|OP|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】三棱錐中,,△為等邊三角形,二面角的余弦值為,當(dāng)三棱錐的體積最大時(shí),其外接球的表面積為.則三棱錐體積的最大值為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方體中,點(diǎn)E是棱的中點(diǎn),點(diǎn)F是線段上的一個(gè)動(dòng)點(diǎn).有以下三個(gè)命題:
①異面直線與所成的角是定值;
②三棱錐的體積是定值;
③直線與平面所成的角是定值.
其中真命題的個(gè)數(shù)是( )
A. 3 B. 2 C. 1 D. 0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“一世”又叫“一代”.東漢·王充《論衡·宜漢篇》:“且孔子所謂一世,三十年也”,清代·段玉裁《說(shuō)文解字注》:“三十年為一世,按父子相繼曰世”.而當(dāng)代中國(guó)學(xué)者測(cè)算“一代”平均為25年.另根據(jù)國(guó)際一家研究機(jī)構(gòu)的研究報(bào)告顯示,全球家族企業(yè)的平均壽命其實(shí)只有26年,約占總量的的家族企業(yè)只能傳到第二代,約占總量的的家族企業(yè)只能傳到第三代,約占總量的家族企業(yè)可以傳到第四代甚至更久遠(yuǎn)(為了研究方便,超過(guò)四代的可忽略不計(jì)).根據(jù)該研究機(jī)構(gòu)的研究報(bào)告,可以估計(jì)該機(jī)構(gòu)所認(rèn)為的“一代”大約為( )
A.23年B.22年C.21年D.20年
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com