【題目】三棱錐中,,△為等邊三角形,二面角的余弦值為,當(dāng)三棱錐的體積最大時(shí),其外接球的表面積為.則三棱錐體積的最大值為(

A.B.C.D.

【答案】D

【解析】

由已知作出圖象,找出二面角的平面角,設(shè)出的長(zhǎng),即可求出三棱錐的高,然后利用基本不等式即可確定三棱錐體積的最大值(用含有長(zhǎng)度的字母表示),再設(shè)出球心,由球的表面積求得半徑,根據(jù)球的幾何性質(zhì),利用球心距,半徑,底面半徑之間的關(guān)系求得的長(zhǎng)度,則三棱錐體積的最大值可求.

如圖所示,過(guò)點(diǎn),垂足為,過(guò)點(diǎn)于點(diǎn),連接,

為二面角的平面角的補(bǔ)角,即有,

易知,則,而△為等邊三角形,

中點(diǎn),

設(shè),

c,

故三棱錐的體積為:,

當(dāng)且僅當(dāng)時(shí),體積最大,此時(shí)共線.

設(shè)三棱錐的外接球的球心為,半徑為,

由已知,,得.

過(guò)點(diǎn)F,則四邊形為矩形,

, ,

,解得

∴三棱錐的體積的最大值為:.

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,、、分別為棱、的中點(diǎn),平面,,,,則(

A.三棱錐的體積為

B.直線與直線垂直

C.平面截三棱錐所得的截面面積為

D.點(diǎn)與點(diǎn)到平面的距離相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,已知四邊形為矩形,,,,的角平分線.

1)求證:平面平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,以為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.已知曲線的參數(shù)方程為為參數(shù),),曲線的極坐標(biāo)方程為,點(diǎn)的一個(gè)交點(diǎn),其極坐標(biāo)為.設(shè)射線與曲線相交于,兩點(diǎn),與曲線相交于兩點(diǎn).

1)求,的值;

2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為實(shí)現(xiàn)2020年全面建設(shè)小康社會(huì),某地進(jìn)行產(chǎn)業(yè)的升級(jí)改造.經(jīng)市場(chǎng)調(diào)研和科學(xué)研判,準(zhǔn)備大規(guī)模生產(chǎn)某高科技產(chǎn)品的一個(gè)核心部件,目前只有甲、乙兩種設(shè)備可以獨(dú)立生產(chǎn)該部件.如圖是從甲設(shè)備生產(chǎn)的部件中隨機(jī)抽取400件,對(duì)其核心部件的尺寸x,進(jìn)行統(tǒng)計(jì)整理的頻率分布直方圖.

根據(jù)行業(yè)質(zhì)量標(biāo)準(zhǔn)規(guī)定,該核心部件尺寸x滿足:|x12|≤1為一級(jí)品,1<|x12|≤2為二級(jí)品,|x12|>2為三級(jí)品.

(Ⅰ)現(xiàn)根據(jù)頻率分布直方圖中的分組,用分層抽樣的方法先從這400件樣本中抽取40件產(chǎn)品,再?gòu)乃槿〉?/span>40件產(chǎn)品中,抽取2件尺寸x∈[12,15]的產(chǎn)品,記ξ為這2件產(chǎn)品中尺寸x∈[14,15]的產(chǎn)品個(gè)數(shù),求ξ的分布列和數(shù)學(xué)期望;

(Ⅱ)將甲設(shè)備生產(chǎn)的產(chǎn)品成箱包裝出售時(shí),需要進(jìn)行檢驗(yàn).已知每箱有100件產(chǎn)品,每件產(chǎn)品的檢驗(yàn)費(fèi)用為50.檢驗(yàn)規(guī)定:若檢驗(yàn)出三級(jí)品需更換為一級(jí)或二級(jí)品;若不檢驗(yàn),讓三級(jí)品進(jìn)入買家,廠家需向買家每件支付200元補(bǔ)償.現(xiàn)從一箱產(chǎn)品中隨機(jī)抽檢了10件,結(jié)果發(fā)現(xiàn)有1件三級(jí)品.若將甲設(shè)備的樣本頻率作為總體的慨率,以廠家支付費(fèi)用作為決策依據(jù),問(wèn)是否對(duì)該箱中剩余產(chǎn)品進(jìn)行一一檢驗(yàn)?請(qǐng)說(shuō)明理由;

(Ⅲ)為加大升級(jí)力度,廠家需增購(gòu)設(shè)備.已知這種產(chǎn)品的利潤(rùn)如下:一級(jí)品的利潤(rùn)為500元/件;二級(jí)品的利潤(rùn)為400元/件;三級(jí)品的利潤(rùn)為200元/件.乙種設(shè)備產(chǎn)品中一、二、三級(jí)品的概率分別是,,.若將甲設(shè)備的樣本頻率作為總體的概率,以廠家的利潤(rùn)作為決策依據(jù).應(yīng)選購(gòu)哪種設(shè)備?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為t為參數(shù)),曲線C2的參數(shù)方程為α為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn).x軸正半軸為極軸建立極坐標(biāo)系.

(Ⅰ)求曲線C1的普通方程和曲線C2的極坐標(biāo)方程;

(Ⅱ)射線與曲線C2交于O,P兩點(diǎn),射線與曲線C1交于點(diǎn)Q,若△OPQ的面積為1,求|OP|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù),將曲線經(jīng)過(guò)伸縮變換后得到曲線.在以原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.

1)說(shuō)明曲線是哪一種曲線,并將曲線的方程化為極坐標(biāo)方程;

2)已知點(diǎn)是曲線上的任意一點(diǎn),又直線上有兩點(diǎn),且,又點(diǎn)的極角為,點(diǎn)的極角為銳角.求:

①點(diǎn)的極角;

面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)αβ是空間中的兩個(gè)平面,lm是兩條直線,則使得αβ成立的一個(gè)充分條件是(

A.lα,mβ,lmB.lm,lαmβ

C.lα,mαlβ,mβD.lm,lαmβ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2021年某省將實(shí)行的新高考模式,即語(yǔ)文、數(shù)學(xué)、英語(yǔ)三科必選,物理、歷史二選一,化學(xué)、生物、政治、地理四選二,若甲同學(xué)選科沒(méi)有偏好,且不受其他因素影響,則甲同學(xué)同時(shí)選擇歷史和化學(xué)的概率為________

查看答案和解析>>

同步練習(xí)冊(cè)答案