10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x,x≤0}\\{f(x-1)+1,x>0}\end{array}\right.$當(dāng)x∈[0,10]時(shí),關(guān)于x的方程f(x)=x的所有解的和為(  )
A.50B.55C.60D.65

分析 解方程x2+2x=x得出x=0或x=-1,結(jié)合函數(shù)的性質(zhì)得出f(n)=n,n∈N,故得出f(x)=x的解為非負(fù)整數(shù).

解答 解:當(dāng)x≤0時(shí),令f(x)=x得:x2+2x=x,解得x=-1或x=0.
又當(dāng)x>0時(shí),f(x)=f(x-1)+1,
∴f(1)=1,f(2)=2,f(3)=3,…f(10)=10,
∴f(x)=x在[0,10]上共有11個(gè)解,分別為0,1,2,3,…10.
∴方程f(x)=x的所有解的和為0+1+2+3+…+10=$\frac{0+10}{2}×11$=55.
故選B.

點(diǎn)評(píng) 本題考查了函數(shù)零點(diǎn)的個(gè)數(shù)判斷,函數(shù)性質(zhì)的應(yīng)用,也可借助函數(shù)圖象進(jìn)行判斷,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.關(guān)天x的方程:$\frac{x+2}{x+1}$-$\frac{x-1}{x-2}$=$\frac{2{x}^{2}+ax}{(x-2)(x+1)}$只有一個(gè)實(shí)根,則實(shí)數(shù)a的值為( 。
A.-2$\sqrt{6}$B.2$\sqrt{6}$C.a=5或a=-$\frac{11}{2}$D.±2$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知函數(shù)f(x)=2sin(ωx+ϕ)(ω>0,|ϕ|<$\frac{π}{2}$)的圖象如圖所示,則函數(shù)f(x)的解析式是f(x)=2sin(2x+$\frac{π}{6}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.集合A={x|x2-2x<0},B={x|1≤x≤4},則A∩B={x|1≤x<2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.觀察下列等式:
1=1
3+5=8
5+7+9=21
7+9+11+13=40
9+11+13+15+17=65

按此規(guī)律,第7個(gè)等式右邊等于133.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在正方體ABCD-A1B1C1D1中,M,N是棱A1B1,B1B的中點(diǎn),求異面直線AM和CN所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知數(shù)列{an}、{bn}分別是等差數(shù)列、等比數(shù)列,且滿足a3=8,a6=17,b1=2,b1b2b3=9(a2+a3+a4).
(1)分別求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)設(shè)cn=log3bn,求證:數(shù)列{cn}是等差數(shù)列,并求其公差d′和首項(xiàng)c1
(3)設(shè)Tn=b1+b4+b7+…+b3n-2,其中n=1,2,…,求Tn的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知x,y滿足(x-1)2+y2=1,則2x+y的最大值為$\sqrt{5}$+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.函數(shù)y=x2-2lnx的單調(diào)遞減區(qū)間是(  )
A.(-∞,-1]∪(0,1]B.[-1,0)∪(0,1]C.[1,+∞)D.(0,1]

查看答案和解析>>

同步練習(xí)冊(cè)答案