F1、F2是定點,|F1F2|=6,動點M滿足|MF1|+|MF2|=8,則點M的軌跡是( )

A.線段 B.直線 C.橢圓 D.圓

C.

解析試題分析:因為F1、F2是定點,|F1F2|=6,動點M滿足|MF1|+|MF2|=8,且|MF1|+|MF2|>|F1F2|,所以,點M的軌跡是橢圓,選C。
考點:本題主要考查橢圓的定義。
點評:簡單題,要全面了解橢圓的定義,其中限制條件|MF1|+|MF2|>|F1F2|要特別注意。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:單選題

已知雙曲線的一個焦點為,點位于該雙曲線上,線段的中點坐標為,則該雙曲線的標準方程為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

過雙曲線的左焦點,作圓的切線,切點為, 直線交雙曲線右支于點,若,則雙曲線的離心率為        (    )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

若直線與雙曲線的右支交于不同的兩點,那么的取值范圍是(  )

A.() B.() 
C.() D.() 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知橢圓:和圓,過橢圓上一點引圓的兩
條切線,切點分別為. 若橢圓上存在點,使得,則橢圓離心率的取值范圍
是(     )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知雙曲線=1(a>0,b>0)的右焦點為F,若過點F且傾斜角為60°的直線與雙曲線的右支有且只有一個交點,則此雙曲線離心率的取值范圍是     (  )

A.[1,2] B.(1,2) C.[2,+∞) D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知直線與平面平行,P是直線上的一點,平面內(nèi)的動點B滿足:PB與直線 。那么B點軌跡是

A.雙曲線B.橢圓C.拋物線D.兩直線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

拋物線的焦點為,點在此拋物線上,且,弦的中點在該拋物線準線上的射影為,則的最大值為(    )

A.B.C.1D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

拋物線的準線方程為,則實數(shù)(   )

A.4 B. C.2 D.

查看答案和解析>>

同步練習冊答案