已知函數(shù)是偶函數(shù).
(1)求k的值;
(2)若方程有解,求m的取值范圍.

(1);(2).

解析試題分析:(1)本題考查了函數(shù)的奇偶性,由求解的值;(2)將方程的解轉(zhuǎn)化為的值域問題,涉及對數(shù)運算,體現(xiàn)了數(shù)形結(jié)合思想.
試題解析:(1)由函數(shù)是偶函數(shù),可知.
.                       2分
,

對一切恒成立.                          4分
                                    6分
(2)由
.                           8分
                                   10分
.
故要使方程有解,的取值范圍為.                  12分
考點:1.函數(shù)的奇偶性;2.函數(shù)的值域;3.數(shù)形結(jié)合思想.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

某商品在近天內(nèi)每件的銷售價格(元)與時間(天)的函數(shù)關(guān)系是該商品的日銷售量(件)與時間(天)的函數(shù)關(guān)系是,設商品的日銷售額為(銷售量與價格之積)
(1)求商品的日銷售額的解析式;
(2)求商品的日銷售額的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

為實數(shù),記函數(shù)的最大值為.
(1)設,求的取值范圍,并把表示為的函數(shù)
(2)求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在一般情況下,大橋上的車流速度(單位:千米/小時)是車流密度(單位:輛/千米)的函數(shù).當橋上的車流密度達到輛/千米時,造成堵塞,此時車流速度為;當時,車流速度為千米/小時.研究表明:當時,車流速度是車流密度的一次函數(shù).
(1)當時,求函數(shù)的表達式;
(2)當車流密度為多大時,車流量(單位時間內(nèi)通過橋上某觀測點的車輛數(shù),單位:輛/小時)可以達到最大,并求出最大值.(精確到1輛/小時)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1) 當時,函數(shù)恒有意義,求實數(shù)a的取值范圍;
(2) 是否存在這樣的實數(shù)a,使得函數(shù)在區(qū)間上為增函數(shù),并且的最大值為1.如果存在,試求出a的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)=x2-4x+a+3,g(x)=mx+5-2m.
(Ⅰ)若方程f(x)=0在[-1,1]上有實數(shù)根,求實數(shù)a的取值范圍;
(Ⅱ)當a=0時,若對任意的x1∈[1,4],總存在x2∈[1,4],使f(x1)=g(x2)成立,求實數(shù)m的取值范圍;
(Ⅲ)若函數(shù)y=f(x)(x∈[t,4])的值域為區(qū)間D,是否存在常數(shù)t,使區(qū)間D的長度為7-2t?若存在,求出t的值;若不存在,請說明理由(注:區(qū)間[p,q]的長度為q-p).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

工廠生產(chǎn)某種產(chǎn)品,次品率與日產(chǎn)量(萬件)間的關(guān)系為常數(shù),且),已知每生產(chǎn)一件合格產(chǎn)品盈利元,每出現(xiàn)一件次品虧損元.
(1)將日盈利額(萬元)表示為日產(chǎn)量(萬件)的函數(shù);
(2)為使日盈利額最大,日產(chǎn)量應為多少萬件?(注:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

二次函數(shù)f(x)滿足f (x+1)-f (x)=2x且f (0)=1.
⑴求f (x)的解析式;
⑵在區(qū)間[-1,1]上,y=f (x)的圖象恒在y=2x+m的圖象上方,試確定實數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

提高過江大橋的車輛通行能力可改善整個城市的交通狀況.在一般情況下,大橋上的車流速度(單位:千米/小時)是車流密度(單位:輛/千米)的函數(shù).當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0千米/小時;當車流密度不超過20輛/千米時,車流速度為60千米/小時.研究表明:當時,車流速度是車流密度的一次函數(shù).
(Ⅰ)當時,求函數(shù)的表達式;
(Ⅱ)當車流密度為多大時,車流量(單位時間內(nèi)通過橋上某觀測點的車輛數(shù),單位:輛/小時)可以達到最大,并求出最大值.(精確到1輛/小時)

查看答案和解析>>

同步練習冊答案