精英家教網 > 高中數學 > 題目詳情
已知f(x),g(x)都是定義在R上的函數,g(x)≠0,若f'(x)g(x)<f(x)g'(x),且f(x)=ax•g(x)(a>0且a≠1)及
f(1)
g(1)
+
f(-1)
g(-1)
=
10
3
,則a的值為______.
∵f(x)=ax•g(x)
f(x)
g(x)
=ax,得
f(1)
g(1)
=a,
f(-1)
g(-1)
=a-1=
1
a

因此
f(1)
g(1)
+
f(-1)
g(-1)
=
10
3
即a+
1
a
=
10
3

解之得a=3或
1
3

設F(x)=
f(x)
g(x)
,則F'(x)=
f′(x)g(x)-f(x)g′(x)
g′(x)

∵f'(x)g(x)<f(x)g'(x),
∴F'(x)=
f′(x)g(x)-f(x)g′(x)
g′(x)
<0在R上成立,故F(x)是R上的減函數
即y=ax是R上的減函數,故a∈(0,1)
所以實數a的值為
1
3

故答案為:
1
3
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

是由滿足下列兩個條件的函數構成的集合:①方程 有實根; ②函數的導函數滿足(1)判斷函數是不是集合中的元素,并說明理由;(2)若集合的元素具有以下性質:“設的定義域為,對于任意都存在使得等式成立.”試用這一性質證明:方程只有一個實數根;(3設是方程的實根,求證:對函數定義域中任意,,當,且時, .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數的圖象與函數的圖象關于點A(0,1對稱.(Ⅰ)求的解析式;(Ⅱ)若上為增函數,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分14分)
設函數,
(1)若,過兩點的中點作軸的垂線交曲線于點,求證:曲線在點處的切線過點;
(2)若,當恒成立,求實數的取值范圍。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知函數f(x)的導函數為f′(x),且f(x)=2xf′(1)+lnx,則f′(1)=______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

設函數f(x)=x2+a
x
的導函數為f′(x),且f′(1)=3,則實數a=______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

設函數f(x)的導數為f′(x),且f(x)=2x-f′(1)lnx+f′(2),則f′(2)的值是______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知f(x)=
2x+1
x2
的導函數為f′(x),則f′(i)=(i為虛數單位)( 。
A.-1-2iB.-2-2iC.-2+2iD.2-2i

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知函數連續(xù),則常數的值是(     )
A.2  B.3  C.4  D.5

查看答案和解析>>

同步練習冊答案