18.已知定義域?yàn)镽的奇函數(shù)f(x)滿足f(3-x)+f(x)=0,且當(dāng)$x∈({-\frac{3}{2},0})$時(shí),f(x)=log2(2x+7),則f(2017)=( 。
A.-2B.log23C.3D.-log25

分析 由題意利用函數(shù)奇偶性求得f(x)的周期為3,再利用函數(shù)的周期性求得f(2017)的值.

解答 解:∵定義域?yàn)镽的奇函數(shù)f(x)滿足f(3-x)+f(x)=0,∴f(-x)=-f(x)=f(3-x),∴f(x)的周期為3.
∴當(dāng)$x∈({-\frac{3}{2},0})$時(shí),f(x)=log2(2x+7),
f(2017)=f(3×672+1)=f(1)=-f(-1)=-log2(-2+7)=-log25,
故選:D.

點(diǎn)評 本題主要考查函數(shù)奇偶性和周期性,函數(shù)值的求法,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知樣本2,3,4,5,a的平均數(shù)是b,且點(diǎn)P(a-b,4b)在直線2x+y-8=0上,則該樣本的標(biāo)準(zhǔn)差是( 。
A.2B.$\sqrt{2}$C.10D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.非零實(shí)數(shù)a,b滿足tanx=x,且a2≠b2,則(a-b)sin(a+b)-(a+b)sin(a-b)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上點(diǎn)P,其左、右焦點(diǎn)分別為F1,F(xiàn)2,△PF1F2的面積的最大值為$\sqrt{3}$,且滿足$\frac{sin∠P{F}_{1}{F}_{2}+sin∠P{F}_{2}{F}_{1}}{sin∠{F}_{1}P{F}_{2}}$=3
(1)求橢圓E的方程;
(2)若A,B,C,D是橢圓上互不重合的四個(gè)點(diǎn),AC與BD相交于F1,且$\overrightarrow{AC}$•$\overrightarrow{BD}$=0,求$\frac{|AC|}{|BD|}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知i為虛數(shù)單位,復(fù)數(shù)z滿足z-zi=1+2i,則z的共軛復(fù)數(shù)$\overline z$所對應(yīng)的點(diǎn)位于復(fù)平面內(nèi)的( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在四棱錐P-ABCD中,已知PA⊥平面ABCD,四邊形ABCD是梯形,∠ABC=90°,BC∥AD,且$PA=AB=BC=\frac{1}{2}AD=1$.
(1)求直線PB與CD所成的角;
(2)求點(diǎn)A到平面PCD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知集合A={0,1,2},B={x|x2-5x+4<0},則A∩(∁RB)的真子集個(gè)數(shù)為( 。
A.1B.3C.4D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若函數(shù)f(x)=$\left\{\begin{array}{l}{x+{2}^{x},x≤0}\\{\frac{x}{a}-lnx,x>0}\end{array}\right.$,在其定義域上恰有兩個(gè)零點(diǎn),則正實(shí)數(shù)a的值為e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知向量$\overrightarrow{a}$=(2,-1),$\overrightarrow$=(3,x),若$\overrightarrow{a}$•$\overrightarrow$=3,則x=3.

查看答案和解析>>

同步練習(xí)冊答案