【題目】高三年級(jí)某班50名學(xué)生期中考試數(shù)學(xué)成績(jī)的頻率分布直方圖如圖所示,成績(jī)分組區(qū)間為:.其中ab,c成等差數(shù)列且.物理成績(jī)統(tǒng)計(jì)如表.(說(shuō)明:數(shù)學(xué)滿(mǎn)分150分,物理滿(mǎn)分100分)

分組

頻數(shù)

6

9

20

10

5

1)根據(jù)頻率分布直方圖,請(qǐng)估計(jì)數(shù)學(xué)成績(jī)的平均分;

2)根據(jù)物理成績(jī)統(tǒng)計(jì)表,請(qǐng)估計(jì)物理成績(jī)的中位數(shù);

3)若數(shù)學(xué)成績(jī)不低于140分的為“優(yōu)”,物理成績(jī)不低于90分的為“優(yōu)”,已知本班中至少有一個(gè)“優(yōu)”同學(xué)總數(shù)為6人,從此6人中隨機(jī)抽取3人,記X為抽到兩個(gè)“優(yōu)”的學(xué)生人數(shù),求X的分布列和期望值.

【答案】1(分);(275分;(3)見(jiàn)解析.

【解析】

1)根據(jù)頻率之和等于,ab,c成等差數(shù)列,,解出的值,利用頻率分布直方圖,求出平均分;(2)根據(jù)物理成績(jī)統(tǒng)計(jì)表,得到中位數(shù)所在的成績(jī)區(qū)間,得到答案;(3)根據(jù)數(shù)學(xué)成績(jī)“優(yōu)”和物理成績(jī)“優(yōu)”,得到兩科均為“優(yōu)”的人數(shù),計(jì)算出每種情況的概率,寫(xiě)出分布列,得到期望值.

1)根據(jù)頻率分布直方圖得,

又因

解得

故數(shù)學(xué)成績(jī)的平均分

(分),

2)總?cè)藬?shù)50分,由物理成績(jī)統(tǒng)計(jì)表知,中位數(shù)在成績(jī)區(qū)間,

所以物理成績(jī)的中位數(shù)為75.

3)數(shù)學(xué)成績(jī)?yōu)椤皟?yōu)”的同學(xué)有4人,物理成績(jī)?yōu)椤皟?yōu)”有5人,

因?yàn)橹辽儆幸粋(gè)“優(yōu)”的同學(xué)總數(shù)為6名同學(xué),

故兩科均為“優(yōu)”的人數(shù)為3人,

X的取值為0、12、3.

.

所以分布列為:

X

0

1

2

3

P

期望值為:

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平行四邊形中,,,EA的中點(diǎn)(如圖1),將沿CD折起到圖2的位置,得到四棱錐是

1)求證:平面PDA

2)若PD與平面ABCD所成的角為.且為銳角三角形,求平面PAD和平面PBC所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)求函數(shù)上的單調(diào)區(qū)間;

2)用表示中的最大值,的導(dǎo)函數(shù),設(shè)函數(shù),若上恒成立,求實(shí)數(shù)的取值范圍;

3)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)M在橢圓C上,過(guò)Mx軸的垂線(xiàn),垂足為N,點(diǎn)P滿(mǎn)足.

1)求點(diǎn)P的軌跡方程;

2)設(shè)點(diǎn)在直線(xiàn)上,且.證明:過(guò)點(diǎn)P且垂直于OQ的直線(xiàn)過(guò)C的左焦點(diǎn)F.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了調(diào)節(jié)高三學(xué)生學(xué)習(xí)壓力,某校高三年級(jí)舉行了拔河比賽,在賽前三位老師對(duì)前三名進(jìn)行了預(yù)測(cè),于是有了以下對(duì)話(huà):老師甲:“7班男生比較壯,7班肯定得第一名”.老師乙:“我覺(jué)得14班比15班強(qiáng),14班名次會(huì)比15班靠前”.老師丙:“我覺(jué)得7班能贏15班”.最后老師丁去觀看完了比賽,回來(lái)后說(shuō):“確實(shí)是這三個(gè)班得了前三名,且無(wú)并列,但是你們?nèi)酥兄挥幸蝗祟A(yù)測(cè)準(zhǔn)確”.那么,獲得一、二、三名的班級(jí)依次為( )

A.7班、14班、15B.14班、7班、15

C.14班、15班、7D.15班、14班、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系,圓的極坐標(biāo)方程為.

(1)求直線(xiàn)的普通方程與圓的直角坐標(biāo)方程;

(2)設(shè)動(dòng)點(diǎn)在圓上,動(dòng)線(xiàn)段的中點(diǎn)的軌跡為與直線(xiàn)交點(diǎn)為,且直角坐標(biāo)系中,點(diǎn)的橫坐標(biāo)大于點(diǎn)的橫坐標(biāo),求點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】三棱柱ABCA1B1C1中,平面AA1B1B⊥平面ABC,ABAA1A1B4,BC2,AC2,點(diǎn)FAB的中點(diǎn),點(diǎn)E為線(xiàn)段A1C1上的動(dòng)點(diǎn).

1)求證:BC⊥平面A1EF;

2)若∠B1EC160°,求四面體A1B1EF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓,動(dòng)直線(xiàn)l與橢圓E交于不同的兩點(diǎn),,且△AOB的面積為1,其中O為坐標(biāo)原點(diǎn).

1)證明:為定值;

2)設(shè)線(xiàn)段AB的中點(diǎn)為M,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,左、右焦點(diǎn)分別是,橢圓上短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為

(1)求橢圓的方程;

(2)過(guò)作垂直于軸的直線(xiàn)交橢圓兩點(diǎn)(點(diǎn)在第二象限),是橢圓上位于直線(xiàn)兩側(cè)的動(dòng)點(diǎn),若,求證:直線(xiàn)的斜率為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案