【題目】某體育用品商場(chǎng)經(jīng)營(yíng)一批進(jìn)價(jià)為40元的運(yùn)動(dòng)服,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn)銷(xiāo)售量y(件)與銷(xiāo)售單價(jià)x(元)符合一次函數(shù)模型,且銷(xiāo)售單價(jià)為60元時(shí),銷(xiāo)量是600件;當(dāng)銷(xiāo)售單價(jià)為64元時(shí),銷(xiāo)量是560件.
(1)寫(xiě)出銷(xiāo)售量y(件)與銷(xiāo)售單價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)試求銷(xiāo)售利潤(rùn)z(元)與銷(xiāo)售單價(jià)x(元)之間的函數(shù)關(guān)系式;
(3)在(1)(2)條件下,當(dāng)銷(xiāo)售單價(jià)為多少元時(shí),商場(chǎng)能獲得最大利潤(rùn)?并求出此最大利潤(rùn).
【答案】(1);(2) ;(3)當(dāng)時(shí),元.
【解析】
(1)設(shè)出一次函數(shù)的解析式,代入兩個(gè)已知條件列方程組,解方程組求得解析式.
(2)用銷(xiāo)售量乘以每件利潤(rùn),求得銷(xiāo)售利潤(rùn).
(3)利用配方法,求得當(dāng)為何值時(shí),利潤(rùn)最大,并求得最大利潤(rùn).
(1)由于銷(xiāo)售量y(件)與銷(xiāo)售單價(jià)x(元)符合一次函數(shù)模型,故設(shè)銷(xiāo)售量y(件)與銷(xiāo)售單價(jià)x(元)之間的函數(shù)關(guān)系式.依題意由,解得.所以.
(2)銷(xiāo)售量乘以每件利潤(rùn)得.
(3)由(2)得.故當(dāng)時(shí),利潤(rùn)取得最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩點(diǎn)
(1)求過(guò)AB中點(diǎn),且在兩坐標(biāo)軸上截距相等的直線的方程;
(2)求過(guò)原點(diǎn),且A、B兩點(diǎn)到該直線距離相等的直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四棱錐P—ABCD中,底面ABCD是矩形,側(cè)棱PA垂直于底面,E、F分別是AB、PC的中點(diǎn),PA=AD.
求證:(1)CD⊥PD;(2)EF⊥平面PCD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),且.
(1)求的值;
(2)畫(huà)出圖像,并寫(xiě)出單調(diào)遞增區(qū)間(不需要說(shuō)明理由);
(3)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列關(guān)于相關(guān)系數(shù)的說(shuō)法不正確的是( )
A. 相關(guān)系數(shù)越大兩個(gè)變量間相關(guān)性越強(qiáng);
B. 相關(guān)系數(shù)的取值范圍為;
C. 相關(guān)系數(shù)時(shí)兩個(gè)變量正相關(guān),時(shí)兩個(gè)變量負(fù)相關(guān);
D. 相關(guān)系數(shù)時(shí),樣本點(diǎn)在同一直線上。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有甲、乙兩隊(duì)學(xué)生參加“知識(shí)聯(lián)想”搶答賽,比賽規(guī)則:①主持人依次給出兩次提示,第一次提示后答對(duì)得2分,第二次提示后答對(duì)得1分,沒(méi)搶到或答錯(cuò)者不得分;②主持人給出第一個(gè)提示后開(kāi)始搶答,第一輪搶答出錯(cuò)失去第二輪答題資格;③每局比賽分兩輪,若第一輪搶答者給出正確答案,則此局比賽結(jié)束,若第一輪答題者答錯(cuò),主持人提示后另一隊(duì)直接答題。如果甲、乙兩隊(duì)搶到答題權(quán)機(jī)會(huì)均等,并且勢(shì)均力敵,第一個(gè)提示后答對(duì)概率均為;第二個(gè)提示后答對(duì)概率均為,為甲隊(duì)在一局比賽中的分.
(1)求甲在一局比賽中得分的分布列;
(2)若比賽共4局,求甲4局比賽中至少得6分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若時(shí),討論函數(shù)的單調(diào)性;
(2)若函數(shù)在區(qū)間上恰有2個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】阿基米德是古希臘偉大的哲學(xué)家、數(shù)學(xué)家、物理學(xué)家,對(duì)幾何學(xué)、力學(xué)等學(xué)科作出過(guò)卓越貢獻(xiàn).為調(diào)查中學(xué)生對(duì)這一偉大科學(xué)家的了解程度,某調(diào)查小組隨機(jī)抽取了某市的100名高中生,請(qǐng)他們列舉阿基米德的成就,把能列舉阿基米德成就不少于3項(xiàng)的稱為“比較了解”,少于三項(xiàng)的稱為“不太了解”.他們的調(diào)查結(jié)果如下:
0項(xiàng) | 1項(xiàng) | 2項(xiàng) | 3項(xiàng) | 4項(xiàng) | 5項(xiàng) | 5項(xiàng)以上 | |
理科生(人) | 1 | 10 | 17 | 14 | 14 | 10 | 4 |
文科生(人) | 0 | 8 | 10 | 6 | 3 | 2 | 1 |
(1)完成如下列聯(lián)表,并判斷是否有的把握認(rèn)為,了解阿基米德與選擇文理科有關(guān)?
比較了解 | 不太了解 | 合計(jì) | |
理科生 | |||
文科生 | |||
合計(jì) |
(2)在抽取的100名高中生中,按照文理科采用分層抽樣的方法抽取10人的樣本.
(i)求抽取的文科生和理科生的人數(shù);
(ii)從10人的樣本中隨機(jī)抽取3人,用表示這3人中文科生的人數(shù),求的分布列和數(shù)學(xué)期望.
參考數(shù)據(jù):
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
,.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com