橢圓
x2
k
+
y2
4
=1的離心率為
1
2
,則實(shí)數(shù)k的值為
 
考點(diǎn):橢圓的簡(jiǎn)單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:分類討論,利用橢圓的離心率公式,即可求出k的值.
解答: 解:k>4,則
k-4
k
=
1
4
,∴k=
16
3

0<k<4時(shí),則
4-k
4
=
1
4
,∴k=3,
故答案為:3或
16
3
點(diǎn)評(píng):本題考查橢圓的簡(jiǎn)單性質(zhì),考查離心率是計(jì)算,考查分類討論的數(shù)學(xué)思想,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知z=
2a+(1-a2)i
1+a2
,則復(fù)數(shù)z所對(duì)應(yīng)的點(diǎn)組成的圖形是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把邊長(zhǎng)為
2
的正方形ABCD沿對(duì)角線BD折起,形成的三棱錐A-BCD的正視圖與俯視圖(正視圖與俯視圖是全等的等腰直角三角形)如圖所示,則其俯視圖的面積為(  )
A、
1
2
B、1
C、2
D、
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,AB⊥AC,AB=AC=AA1,D為BC的中點(diǎn).
(1)證明:A1B∥平面ADC1
(2)證明:平面ADC1⊥平面BB1C1C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

P點(diǎn)在橢圓
x2
4
+
y2
3
=1
上運(yùn)動(dòng),Q、R分別在兩圓(x+1)2+y2=1和(x-1)2+y2=1上運(yùn)動(dòng),則|PQ|+|PR|的最大值為
 
,最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+sinx,項(xiàng)數(shù)為19的等差數(shù)列{an}的公差d≠0,若f(a1)+f(a2)+…+f(a18)+f(a19)=0,則當(dāng)k=
 
時(shí),f(ak)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,O為矩形ABCD的中心,E,F(xiàn)為平面ABCD同側(cè)兩點(diǎn),且EF
.
1
2
BC,△CDE和△ABF都是等邊三角形.
(1)求證:FO∥平面ECD;
(2)設(shè)BC=
3
CD,求證:EO⊥平面FCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)幾何體的三視圖如圖所示,那么該幾何體的體積是( 。
A、3
B、2
C、
4
3
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知“函數(shù)、數(shù)y=f(x)的圖象關(guān)于點(diǎn)P(a,b)成中心對(duì)稱圖形”的充要條件為“函數(shù)y=f(x+a)-b是奇函數(shù)”,現(xiàn)有以下四個(gè)函數(shù),
①y=
1-2x
x-4
 ②y=(x-2)|x-2|+
1
2
x ③y=-
8
2x+4
 ④y=log2
2x
4-x

其中具有相同對(duì)稱中心的兩個(gè)函數(shù)的序號(hào)是( 。
A、①和③B、①和④
C、②和③D、②和④

查看答案和解析>>

同步練習(xí)冊(cè)答案