把邊長為
2
的正方形ABCD沿對角線BD折起,形成的三棱錐A-BCD的正視圖與俯視圖(正視圖與俯視圖是全等的等腰直角三角形)如圖所示,則其俯視圖的面積為( 。
A、
1
2
B、1
C、2
D、
2
2
考點:由三視圖求面積、體積
專題:計算題,空間位置關(guān)系與距離
分析:結(jié)合直觀圖,根據(jù)正視圖、俯視圖均為全等的等腰直角三角形,可得平面BCD⊥平面ABD,分別求得△BDC和△ABD的高,即為側(cè)視圖直角三角形的兩直角邊長,代入面積公式計算.
解答: 解:如圖:∵正視圖、俯視圖均為全等的等腰直角三角形,
∴平面BCD⊥平面ABD,
又O為BD的中點,∴CO⊥平面ABD,OA⊥平面BCD,
∴側(cè)視圖為直角三角形,且三角形的兩直角邊長為1,
∴側(cè)視圖的面積S=
1
2
×1×1
=
1
2

故選:A.
點評:本題考查了由正視圖、俯視圖求幾何體的側(cè)視圖的面積,判斷幾何體的特征及相關(guān)幾何量的數(shù)據(jù)是關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若一個底面是正三角形的三棱柱的主視圖如圖所示,其頂點都在一個球面上,則該球的表面積(  )
A、4π
B、
19
12
π
C、
19
3
π
D、
4
3
π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=3x2+1,則f(2)=
 
,f(-3)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)i是虛數(shù)單位,計算:(3-i)(2+i)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|-2≤x≤5},B={x|m-1≤x≤m+1}
(1)若m=5,求A∩B
(2)若B⊆A,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P是雙曲線
x2
4
-y2=1上任意一點,過點P分別作雙曲線的兩條漸近線的垂線,垂足分別為A、B,則
PA
PB
=( 。
A、-
12
25
B、
12
25
C、-
24
25
D、-
4
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在△ABC中,∠BAC=120°,AC=3,AB=1,P為∠BAC平分線上異于A的一點,∠APB=α,三角形PAB的面積記為S.
(1)求BC的長;
(2)若α=30°時,求S的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓
x2
k
+
y2
4
=1的離心率為
1
2
,則實數(shù)k的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在如圖所示的空間直角坐標系O-xyz中,一個四面體的頂點坐標分別是(0,0,2),(2,2,0),(2,1,1),(2,2,2).給出編號為①,②,③,④的四個圖,則該四面體的側(cè)視圖和俯視圖分別為(  )
A、①和②B、①和③
C、③和②D、④和②

查看答案和解析>>

同步練習冊答案