分析 (1)由題意可得c=1,進(jìn)而得到f(x),可取g(x)=x;
(2)假設(shè)存在常數(shù)a,b,c滿足題意,令x=1,可得a+b+c=1,再由二次不等式恒成立問題解法,運(yùn)用判別式小于等于0,化簡整理,即可判斷存在.
解答 解:(1)函數(shù)f(x)=ax2+bx+c的圖象經(jīng)過點(diǎn)(-1,0),
可得a-b+c=0,又a=1,b=2,
則f(x)=x2+2x+1,
由新定義可得g(x)=x為函數(shù)f(x)的一個(gè)承托函數(shù);
(2)假設(shè)存在常數(shù)a,b,c,使得y=x為函數(shù)f(x)的一個(gè)承托函數(shù),
且f(x)為函數(shù)$y=\frac{1}{2}{x^2}+\frac{1}{2}$的一個(gè)承托函數(shù).
即有x≤ax2+bx+c≤$\frac{1}{2}$x2+$\frac{1}{2}$恒成立,
令x=1可得1≤a+b+c≤1,即為a+b+c=1,
即1-b=a+c,
又ax2+(b-1)x+c≥0恒成立,可得a>0,且(b-1)2-4ac≤0,
即為(a+c)2-4ac≤0,即有a=c;
又(a-$\frac{1}{2}$)x2+bx+c-$\frac{1}{2}$≤0恒成立,
可得a<$\frac{1}{2}$,且b2-4(a-$\frac{1}{2}$)(c-$\frac{1}{2}$)≤0,
即有(1-2a)2-4(a-$\frac{1}{2}$)2≤0恒成立.
故存在常數(shù)a,b,c,且0<a=c<$\frac{1}{2}$,b=1-2a,
可取a=c=$\frac{1}{4}$,b=$\frac{1}{2}$.滿足題意.
點(diǎn)評(píng) 本題考查新定義的理解和運(yùn)用,考查不等式恒成立問題的解法,注意運(yùn)用賦值法和判別式法,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 垂直于同一條直線的兩條直線相互垂直 | |
B. | 若一條直線平行于兩個(gè)相交平面,則這條直線與這兩個(gè)平面的交線平行 | |
C. | 若一個(gè)平面經(jīng)過另一個(gè)平面的垂線,那么這兩個(gè)平面相互垂直 | |
D. | 若一個(gè)平面內(nèi)的兩條相交直線與另一個(gè)平面內(nèi)的相交直線分別平行,那么這兩個(gè)平面相互平行 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,4) | B. | (0,4] | C. | [0,4) | D. | [0,4] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({0,\frac{1}{2}})$ | B. | $({\frac{1}{2},1})$ | C. | (1,2) | D. | (2,3) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com