18.如圖,直三棱柱ABC-A1B1C1中,∠BCA=90°,點D1,F(xiàn)1分別是A1B1,A1C1的中點,若BC=CA=2CC1,則BD1與AF1所成的角是(  )
A.30°B.45°C.60°D.90°

分析 取BC的中點D,連接D1F1,F(xiàn)1D,AD,由D1B∥D1F,知∠DF1A就是BD1與AF1所成角,由此能求出BD1與AF1所成的角.

解答 解:取BC的中點D,連接D1F1,F(xiàn)1D,AD,∴D1B∥DF1,
∴∠DF1A就是BD1與AF1所成角
設(shè)BC=CA=2CC1=2,
∵直三棱柱ABC-A1B1C1中,∠BCA=90°,
點D1,F(xiàn)1分別是A1B1,A1C1的中點,
∴AD=$\sqrt{4+1}$=$\sqrt{5}$,AF1=$\sqrt{1+1}$=$\sqrt{2}$,
DF1=BD1=$\sqrt{1+(\frac{\sqrt{4+4}}{2})^{2}}$=$\sqrt{3}$,
在△DF1A中,cos∠DF1A=$\frac{3+2-5}{2×\sqrt{2}×\sqrt{3}}$=0.
∴∠DF1A=90°.
故選:D.

點評 本題考查異面直線所成角的求法,是基礎(chǔ)題,解題時要認真審題,注意向量法的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列冪函數(shù)中過點(0,0),(1,1)的偶函數(shù)是( 。
A.$y={x^{\frac{1}{2}}}$B.y=x2C.y=x-1D.y=x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列函數(shù)在區(qū)間(-∞,0)上是增函數(shù)的是( 。
A.y=-$\frac{1}{x}$B.y=2x2-x-1C.y=|x|D.y=-2x-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知數(shù)列{an}滿足條件$\frac{1}{3}{a_1}+\frac{1}{3^2}{a_2}+\frac{1}{3^3}{a_3}+…+\frac{1}{3^n}{a_n}=3n+1$,則數(shù)列{an}的通項公式為( 。
A.${a_n}={3^n}$B.${a_n}={3^{n+1}}$
C.${a_n}=\left\{\begin{array}{l}12,n=1\\{3^n},n≥2\end{array}\right.$D.${a_n}=\left\{\begin{array}{l}12,n=1\\{3^{n+1}},n≥2\end{array}\right.$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=ax2-x+2,
(1)當a=1時,當x∈[1,+∞)時,求函數(shù)$\frac{f(x)}{x}$的最小值;
(2)解關(guān)于x的不等式f(x)-2ax≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知向量$\overrightarrow m=(sinx,-1)$,向量$\overrightarrow n=(\sqrt{3}cosx,-\frac{1}{2})$,函數(shù)$f(x)=(\overrightarrow m+\overrightarrow n)•\overrightarrow m$.
(Ⅰ)求f(x)單調(diào)遞減區(qū)間;
(Ⅱ)已知a,b,c分別為△ABC內(nèi)角A,B,C的對邊,A為銳角,$a=2\sqrt{3}$,c=4,且f(A)恰是f(x)在$[{0,\frac{π}{2}}]$上的最大值,求A,b,和△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.P為雙曲線$\frac{x^2}{4}-\frac{y^2}{9}=1$右支上一點,F(xiàn)1,F(xiàn)2分別為雙曲線的左右焦點,且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,直線PF2交y軸于點A,則△AF1P的內(nèi)切圓半徑為( 。
A.2B.3C.$\frac{3}{2}$D.$\frac{{\sqrt{13}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)函數(shù)f(x)定義在實數(shù)集R上,滿足f(1+x)=f(1-x),當x≥1時,f(x)=2x,則下列結(jié)論正確的是(  )
A.f($\frac{1}{3}$)<f(2)<f($\frac{1}{2}$)B.f($\frac{1}{2}$)<f(2)<f($\frac{1}{3}$)C.f($\frac{1}{2}$)<f($\frac{1}{3}$)<f(2)D.f(2)<f($\frac{1}{3}$)<f($\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)f(x)的定義域為R,如果存在函數(shù)g(x),使得f(x)≥g(x)對于一切實數(shù)x都成立,那么稱g(x)為函數(shù)f(x)的一個承托函數(shù).已知函數(shù)f(x)=ax2+bx+c的圖象經(jīng)過點(-1,0).
(1)若a=1,b=2.寫出函數(shù)f(x)的一個承托函數(shù)(結(jié)論不要求證明);
(2)判斷是否存在常數(shù)a,b,c,使得y=x為函數(shù)f(x)的一個承托函數(shù),且f(x)為函數(shù)$y=\frac{1}{2}{x^2}+\frac{1}{2}$的一個承托函數(shù)?若存在,求出a,b,c的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案