分析 利用一元二次方程的實數(shù)根與判別式的關(guān)系、不等式的解法可得命題P與Q的m的取值范圍,再由“P或Q”為真,“P且Q”為假,可得P與Q必然一個為真一個為假.即可得出.
解答 解:命題P:方程x2+mx+1=0有兩個不等的負(fù)實根.
∴$\left\{\begin{array}{l}{△={m}^{2}-4>0}\\{-m<0}\end{array}\right.$,解得m>2.
命題Q:方程4x2+4(m-2)x+1=0無實根.△=16(m-2)2-16<0,解得:1<m<3.
若“P或Q”為真,“P且Q”為假,
∴P與Q必然一個為真一個為假.
∴$\left\{\begin{array}{l}{m>2}\\{m≤1或m≥3}\end{array}\right.$或$\left\{\begin{array}{l}{m≤2}\\{1<m<3}\end{array}\right.$,
解得1<m≤2,或m≥3.
則實數(shù)m的取值范圍是(1,2]∪[3,+∞).
故答案為:(1,2]∪[3,+∞).
點評 本題考查了一元二次方程的實數(shù)根與判別式的關(guān)系、不等式的解法、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 函數(shù)f(x)在(-∞,1)上單調(diào)遞增 | B. | 函數(shù)f(x)在(-∞,1)上單調(diào)遞減 | ||
C. | 函數(shù)f(x)在(-2,2)上單調(diào)遞增 | D. | 函數(shù)f(x)在(-2,2)上單調(diào)遞減 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要 | B. | 必要不充分 | ||
C. | 充要 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{11}{14}$ | B. | $\frac{12}{7}$ | C. | $-\frac{14}{45}$ | D. | $-\frac{11}{24}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com