【題目】某研究小組為了研究某品牌智能手機(jī)在正常使用情況下的電池供電時(shí)間,分別從該品牌手機(jī)的甲、乙兩種型號(hào)中各選取部進(jìn)行測(cè)試,其結(jié)果如下:

甲種手機(jī)供電時(shí)間(小時(shí))

乙種手機(jī)供電時(shí)間(小時(shí))

(1)求甲、乙兩種手機(jī)供電時(shí)間的平均值與方差,并判斷哪種手機(jī)電池質(zhì)量好;

(2)為了進(jìn)一步研究乙種手機(jī)的電池性能,從上述部乙種手機(jī)中隨機(jī)抽取部求這兩部手機(jī)中恰有一部手機(jī)的供電時(shí)間大于該種手機(jī)供電時(shí)間平均值的概率.

【答案】(1)甲種手機(jī)電池質(zhì)量更好 (2)所求概率為

【解析】試題分析:1由平均值,方差公式分別求得甲、乙的平均值與方差。方差越小波動(dòng)越小,質(zhì)量越好。(2)由題意得上述部乙種手機(jī)中有部手機(jī)的供電時(shí)間大于該種手機(jī)供電時(shí)間平均值,記它們分別是,其余的為用枚舉法可知共15種,滿(mǎn)足條件共種,所以概率。

試題解析(1)甲的平均值

乙的平均值,

甲的方差

乙的方差

因?yàn)榧住⒁覂煞N手機(jī)的平均數(shù)相同,甲的方差比乙的方差小,所以認(rèn)為甲種手機(jī)電池質(zhì)量更好.

(2)由題意得上述部乙種手機(jī)中有部手機(jī)的供電時(shí)間大于該種手機(jī)供電時(shí)間平均值,記它們分別是,其余的為,

從上述部乙種手機(jī)中隨機(jī)抽取部的所有結(jié)果為 ,共有種,

其中恰有一部手機(jī)的供電時(shí)間大于該種手機(jī)供電時(shí)間平均值的結(jié)果為 ,共有種,

所以所求概率為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知y=f(x)是定義域?yàn)镽的奇函數(shù),當(dāng)x∈[0,+∞)時(shí),f(x)=x2﹣2x.
(Ⅰ)寫(xiě)出函數(shù)y=f(x)的解析式;
(Ⅱ)若方程f(x)=a恰有3個(gè)不同的解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=|x﹣1|+|x﹣a|,
(1)若a=﹣1,解不等式f(x)≥3;
(2)如果x∈R,f(x)≥2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果函數(shù)f(x)=ax2+2x+a2﹣3在區(qū)間[2,4]上具有單調(diào)性,則實(shí)數(shù)a取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),f(1)=0, >0(x>0),則不等式x2f(x)>0的解集是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)y=ln 為奇函數(shù),則a=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的函數(shù)F(x)的圖象,由指數(shù)函數(shù)f(x)=ax與冪函數(shù)g(x)=xb“拼接”而成.

(1)求F(x)的解析式;
(2)比較ab與ba的大小;
(3)已知(m+4)b<(3﹣2m)b , 求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= ,則下列關(guān)于函數(shù)f(x)的說(shuō)法正確的是(
A.為奇函數(shù)且在R上為增函數(shù)
B.為偶函數(shù)且在R上為增函數(shù)
C.為奇函數(shù)且在R上為減函數(shù)
D.為偶函數(shù)且在R上為減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等差數(shù)列中, ,

(1)求數(shù)列的通項(xiàng)公式;

(2)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案