【題目】如果函數(shù)f(x)=ax2+2x+a2﹣3在區(qū)間[2,4]上具有單調(diào)性,則實數(shù)a取值范圍是

【答案】
【解析】解:a<0時,函數(shù)f(x)=ax2+2x+a2﹣3的圖象是開口朝上,且以x= 為對稱軸的拋物線,如果函數(shù)f(x)=ax2+2x+a2﹣3在區(qū)間[2,4]上具有單調(diào)性,
≤2,或 ≥4,
解得:a∈
a=0時,f(x)=2x﹣3區(qū)間[2,4]上具有單調(diào)性,滿足條件,
a>0時,函數(shù)f(x)=ax2+2x+a2﹣3的圖象是開口朝上,且以x= 為對稱軸的拋物線,
此時 <2恒成立,故函數(shù)f(x)=ax2+2x+a2﹣3在區(qū)間[2,4]上具有單調(diào)性,
綜上所述,a∈ ,
所以答案是:
【考點精析】解答此題的關(guān)鍵在于理解二次函數(shù)的性質(zhì)的相關(guān)知識,掌握當(dāng)時,拋物線開口向上,函數(shù)在上遞減,在上遞增;當(dāng)時,拋物線開口向下,函數(shù)在上遞增,在上遞減.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直線坐標(biāo)系中,以坐標(biāo)原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,直線的參數(shù)方程為為參數(shù)),曲線的極坐標(biāo)方程為.

(1)直線的普通方程和曲線的參數(shù)方程;

(2)設(shè)點上, 處的切線與直線垂直,求的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=x3﹣3x2﹣9x+3,若函數(shù)g(x)=f(x)﹣m在x∈[﹣2,5]上有3個零點,則m的取值范圍為(
A.(﹣24,8)
B.(﹣24,1]
C.[1,8]
D.[1,8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=f(x)的圖象與g(x)=logax(a>0,且a≠1)的圖象關(guān)于x軸對稱,且g(x)的圖象過(4,2)點.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若f(x﹣1)>f(5﹣x),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足條件an+1=
(1)若a1= ,求a2 , a3 , a4的值.
(2)已知對任意的n∈N+ , 都有an≠1,求證:an+3=an對任意的正整數(shù)n都成立;
(3)在(1)的條件下,求a2015

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲廠根據(jù)以往的生產(chǎn)銷售經(jīng)驗得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計規(guī)律:每生產(chǎn)產(chǎn)品x(百臺),其總成本為G(x)(萬元),其中固定成本為3萬元,并且每生產(chǎn)1百臺的生產(chǎn)成本為1萬元(總成本=固定成本+生產(chǎn)成本),銷售收入R(x)= ,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計規(guī)律,請完成下列問題:
(1)寫出利潤函數(shù)y=f(x)的解析式(利潤=銷售收入﹣總成本);
(2)甲廠生產(chǎn)多少臺新產(chǎn)品時,可使盈利最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究小組為了研究某品牌智能手機(jī)在正常使用情況下的電池供電時間,分別從該品牌手機(jī)的甲、乙兩種型號中各選取部進(jìn)行測試,其結(jié)果如下:

甲種手機(jī)供電時間(小時)

乙種手機(jī)供電時間(小時)

(1)求甲、乙兩種手機(jī)供電時間的平均值與方差,并判斷哪種手機(jī)電池質(zhì)量好;

(2)為了進(jìn)一步研究乙種手機(jī)的電池性能,從上述部乙種手機(jī)中隨機(jī)抽取部求這兩部手機(jī)中恰有一部手機(jī)的供電時間大于該種手機(jī)供電時間平均值的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

袋中有形狀和大小完全相同的四種不同顏色的小球,每種顏色的小球各有4個,分別編號為1,2,3,4.現(xiàn)從袋中隨機(jī)取兩個球.

(Ⅰ)若兩個球顏色不同,求不同取法的種數(shù);

(Ⅱ)在(1)的條件下,記兩球編號的差的絕對值為隨機(jī)變量X,求隨機(jī)變量X的概率分布與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2sin(ωx+ )(ω>0)的圖象與y=2的圖象的兩相鄰交點的距離為π,要得到y(tǒng)=2sinωx的圖象,只需把y=f(x)的圖象(
A.向右平移
B.向左平移
C.向左平移
D.向右平移

查看答案和解析>>

同步練習(xí)冊答案